[1] Goldstein R J, Eckert E R G, Burggraf F. Effects of Hole Geometry and Density on Three-Dimensional Film Cooling[J]. International Journal of Heat and Mass Transfer, 1974, 17(5): 595-607.
[2] Renze P, Schroder W, Meinke M. Hole Shape Comparison for Film Cooling Flows Using Large-Eddy Simulations[R]. AIAA 2007-927.
[3] 姜伟, 谢诞梅, 高尚, 等. 倾角孔对叶片前缘冷却效率影响的数值研究[J]. 推进技术, 2015, 36(7): 1062-1068. (JIANG Wei, XIE Dan-mei, GAO Shang, et al. Numerical Study of Influence of Inclined Hole on Film-Cooling Effectiveness at Leading Edge of a Turbine Blade[J]. Journal of Propulsion Technology, 2015, 36(7): 1062-1068.)
[4] 李广超, 朱惠人, 白江涛, 等. 气膜孔布局对前缘气膜冷却效率影响的实验[J]. 推进技术, 2008, 29(2): 153-157. (LI Guang-chao, ZHU Hui-ren, BAI Jiang-tao, et al. Experimental Investigation of Film Cooling Effectiveness on Leading Edge with Various Geometries[J]. Journal of Propulsion Technology, 2008, 29(2):153-157.)
[5] 李永康, 张靖周, 姚玉. 利用三角形突片改善气膜冷却效率的数值研究[J]. 航空动力学报, 2006, 21(1): 83-87.
[6] 戴萍, 林枫. 横向槽结构对气膜冷却效果影响的数值研究[J]. 推进技术, 2011, 32(2): 253-260. (DAI Ping, LIN Feng. Numerical Investigation on the Influence of Transverse Slot Configurations on Film Cooling Effect[J]. Journal of Propulsion Technology, 2011, 32(2): 253-260.)
[7] Kusterer K, Bohn D, Sugimoto T, et al. Double-Jet Ejection of Cooling Air for Improved Film-Cooling[J]. Journal of Turbomachinery, 2007, 129(4):809-815.
[8] Heidmann J D, Ekkad S. A Novel Anti-Vortex Turbine Film Cooling Hole Concept[R]. ASME GT 2007-27528.
[9] Guo X, Schroder W, Meinke M. Large-Eddy Simulations of Film Cooling Flows[J]. Computers and Fluids, 2006, 35(6): 587-606.
[10] Pedersen D R, Eckert E R G, Goldstein R J. Film Cooling with Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy[J]. Journal of Heat Transfer, 1977, 99(4): 620-627.
[11] Bons J P, Macarthur C D, Rivir R B. The Effect of High Free-Stream Turbulence on Film Cooling Effectiveness[J]. Journal of Turbomachinery, 1996, 118(4):814-825.
[12] 何立明, 苏建勇, 白晓峰, 等. 等离子体气动激励改善气膜冷却效率的数值研究[J]. 空军工程大学学报, 2008, 9(3): 1-5.
[13] Roy S, Wang C C. Plasma Actuated Heat Transfer[J]. Journal of Applied Physics, 2008, 92(23): 231501-1-231503.
[14] Roy S, Wang C C. Numerical Investigation of Three-Dimensional Plasma Actuation[J]. Journal of Thermophysics and Heat Transfer, 2013, 27(3): 489-497.
[15] 代胜吉, 何立明, 丁未, 等. 马蹄形等离子体激励器强化气膜冷却效率机理[J]. 2013, 28(9): 1982-1987.
[16] Yu Jinlu, He Liming, Zhu Yifei, et al. Numerical Simulation of the Effect of Plasma Aerodynamic Actuation on Improving Film Hole Cooling Performance[J]. International Journal of Heat and Mass Transfer, 2013, 49(6): 897-906.
[17] Shyy W, Jayaraman B, Andersson A. Modeling of Glow Discharge-Induced Fluid Dynamics[J]. Journal of Applied Physics, 2002, 92(11): 6434-6443.
[18] Mikhail L S, Philippe R S, Mikhail K S, et al. A Hybrid RANS-LES Approach with Delayed-DES and Wall-Modelled LES Capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649.
[19] Kohli A, Bogard D G. Adiabatic Effectiveness, Thermal Fields, and Velocity Fields for Film Cooling with Large Angle Injection[J]. Journal of Turbomachinery, 1997, 119: 352-358.
[20] Sakai E, Takahashi T, Watanabe H. Large-Eddy Simulation of an Inclined Round Jet Issuing into a Crossflow[J]. International Journal of Heat and Mass Transfer, 2014, 69: 300-311.
[21] Gaitonde D V, Visbal M R, Roy S. A Coupled Approach for Plasma-Based Flow Control Simulations of Wing Sections[R]. AIAA 2006-1205. * 收稿日期:2015-09-05;修订日期:2015-10-26。作者简介:李国占,男,博士生,研究领域为燃气轮机叶片气膜冷却技术。E-mail: liguozhan90@gmail.com(编辑:史亚红)
|