[1] 王克秀, 李葆萱, 吴心平. 固体火箭推进剂及燃烧[M]. 西安:西北工业大学出版社, 1983.
[2] 江治, 李疏芬, 赵凤起, 等. 纳米铝粉和镍粉对复合推进剂燃烧性能的影响[J]. 推进技术, 2004, 25(4): 368-372. (JIANG Zhi, LI Shu-fen, ZHAO Feng-qi, et al. Effect of Nanoaluminum and Nickel Powders on the Combustion Properties of Composite Propellant [J]. Journal of Propulsion Technology, 2004, 25(4): 368-372.)
[3] Popenko E M, Gromov A A, Shamina Y Y, et al. Combustion of Agglomerated Ultrafine Aluminum Powders in Air[J]. Combustion,Explosion and Shock Waves, 2002, 38(6): 665-669.
[4] Ash R L, Dowler W L, Varsi G. Feasibility of Rocket Propellant Production on Mars[J]. Acta Astronautica, 1978, 5(9): 705-724.
[5] French J R. Concepts for In-Situ Resource Utilization on Mars: A Personal Historical Perspective[J]. British Interpanetary Society, 1995, 48(7): 311-313.
[6] Sulivan T A, Linne D, Bryant L, et al. In-Situ-Produced Methane and Methane Carbon MoNOxide Mixtures for Return Propulsion on Mars[J]. Journal of Propulsion and Power, 1995, 11(5): 1056-1062.
[7] Shafirovich E Ya, Shiryaev A A, Goldshleger U I. Magnesium and Carbon Dioxide-a Rocket Propellant for Mars Missions[J]. Journal of Propulsion and Power, 1993, 9(2): 197-203.
[8] Berner M K, Zarko V E, Talawar M B. Nanoparticles of Energetic Materials: Synthesis and Properties (Review) [J]. Combustion, Explosion, and Shock Waves, 2013, 49(6): 625-647.
[9] Rosenband V, Gany A. High-Reactivity Aluminum Powders[J]. International Journal of Energetic Materials and Chemical Propulsion, 2011, 10(1): 19-32.
[10] Timothy A A, Shafirovich E, Varma A. Ignition Mechanism of Nickel-Coated Aluminum Particles[J]. Combustion and Flame, 2007, 150(150): 60-70.
[11] Veen J A R V, Jonkers G, Hesselink W H. Interaction of Transition-Metal Acetylacetonates with γ-Al2O3 Surfaces[J]. Journal of the Chemical Society Faraday Transactions Physical Chemistry in Condensed Phases, 1989, 2(2): 389-413.
[12] Knotek O, Lugscheider E, Eschnauer H R. Reactive Kinetic Observations for Spraying with Ni-Al Powder [C]. London: International Metal Spraying Conference, 1973.
[13] 曾文, 李海霞, 马洪安, 等. RP-3航空煤油模拟替代燃料的化学反应简化机理[J]. 推进技术, 2014, 35(18): 1139-1145. (ZENG Wen, LI Hai-xia, Ma Hong-an, et al. Reduced Chemical Reaction Mechanism of Surrogate Fuel for RP-3 Kerosene[J]. Journal of Propulsion Technology, 2014, 35(18): 1139-1145.)
[14] 杨肖曦. 工程燃烧原理[M]. 北京:中国石油大学出版社, 2008: 66-67.
[15] 喻秋梅, 鹿亚军, 陈宏国. 煤燃烧试验中着火点确定方法的探讨[J]. 华北电力技术, 2001, (7): 9-10.
[16] Coats A W, Redfern J P. Kinetic Parameters from Thermogravimetric Data[J]. Nature, 1964, 201(1): 682-691.
[17] 胡荣祖. 热分析动力学[M]. 北京:科学出版社, 2001: 151-155.
[18] 李疏芬, 金乐骥. 铝粉粒度对含铝推进剂燃烧特性的影响[J]. 含能材料, 1996, 4(2): 68-74.
[19] Chen L, Song W L, Lv J, et al. Effect of Heating Rates on TG-DTA Results of Aluminum Nanopowders Prepared by Laser Heating Evaporation[J]. Journal of Thermal Analysis and Calorimetry, 2009, 96(1): 141-145. * 收稿日期:2015-08-14;修订日期:2015-11-03。基金项目:国家自然科学基金(51376007;51206001)。作者简介:王婷,女,硕士生,研究领域为燃料燃烧。E-mail: wangtingxiaoshi@163.com通讯作者:朱宝忠,男,副教授,研究领域为燃烧化学。E-mail: baozhongzhu@163.com(编辑:史亚红)
|