[1] Bulten N W H. A Breakthrough in Waterjet Propulsion Systems[C]. Doha: International Maritime Defence Exhibition and Conference, 2008.
[2] Verbeek R. Recent Development in Waterjet Design[C]. Amsterdam: International Conference on Water-Jet Propulsion II, 1998.
[3] Tervisga V. The Effect of Waterjet-Hull Interaction on Thrust and Propulsion Efficiency[C]. Trondheim: Proceedings of International Conference on Fast Sea Transportation Conference, 1991.
[4] Hu P, Zangeneh M. Investigations of 3D Turbulent Flow Inside and Around a Water-Jet Intake Duct Under Different Operating Conditions[J]. Journal of Fluids Engineering, 1999, 121(2): 396-404.
[5] Seil G J. The Effect of the Shaft, Shaft Rotation and Scale on the Flow in Waterjet Inlets[C]. Gothenburg: International Conference on Waterjet Propulsion III, 2001.
[6] Bulten N W H. Numerical Analysis of Waterjet Propulsion System[D]. Eindhoven: Technical University of Eindhoven, 2006.
[7] 魏应三, 王永生. 喷水推进器进水流道不均匀度统一描述[J]. 武汉理工大学学报, 2009, 30(8): 159-163.
[8] Zangeneh M, Daneshkhah K, DaCosta B. A Multi Objective Automatic Optimization Strategy for Design of Waterjet Pumps[C]. London: International Conference on Waterjet Propulsion V, 2008.
[9] 肖若富, 陶然, 王维维, 等. 混流泵叶轮反问题设计与水力性能优[J]. 农业机械学报, 2014, 45(9):1000-1298.
[10] Bonaiuti D, Zangeneh M, Aartojarvi R, et al. Parametric Design of a Waterjet Pump by Means of Inverse Design, CFD Calculations and Experimental Analyses[J]. Journal of Fluids Engineering, 2010, 132(3).
[11] 常书平, 王永生, 靳栓宝, 等. 载荷分布规律对混流泵叶轮设计的影响[J]. 排灌机械工程学报, 2013, 31(2): 123-127.
[12] Van Esch B P M. Performance and Radial Loading of a Mixed-Flow Pump Under Non-Uniform Suction Flow[J]. Journal of Fluids Engineering, 2009, 131(5).
[13] Svensson R, Grossi L. Trail Result Including Wake Measurements from the World’s Largest Waterjet Installation[C]. Amsterdam: International Conference on Waterjet Propulsion II, 1998.
[14] Bulten N W H, Verbeek R. CFD Simulations of the Flow Through a Waterjet Installation[C]. London: International Conference on Waterjet Propulsion IV, 2004.
[15] 常书平, 王永生. 采用k-ε湍流模型的喷水推进器性能预报[J]. 华中科技大学学报, 2012, 40(4): 88-90.
[16] 刘瑞华, 曹璞钰, 王洋, 等. 无轴式喷水推进泵的水动力特性[J]. 排灌机械工程学报, 2015, 33(5).
[17] Kim Y, Engeda A, Aungier R, et al. The Influence of Inlet Flow Distortion on the Performance of a Centrifugal Compressor and the Development of an Improved Inlet Using Numerical Simulations[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power & Energy, 2001, 215(3): 323-338.
[18] Engeda A, Kim Y, Aungier R, et al. The Inlet Flow Structure of a Centrifugal Compressor Stage and Its Influence on the Compressor Performance[J]. Journal of Fluids Engineering, 2003, 125(5): 779-785.
[19] 金平仲. 船舶喷水推进[M]. 北京:国防工业出版社, 1986.
[20] 胡伟波, 程邦勤, 陈志敏, 等. 整体涡旋流畸变对压气机性能影响的研究[J]. 推进技术, 2015, 36(9):1324-1330. (HU Wei-bo, CHENG Bang-qin, CHEN Zhi-min, et al. Investigation on Effects of Bulk Swirl Distortion on Compressor Performance[J]. Journal of Propulsion Technology, 2015, 36(9): 1324-1330.)
[21] 林万来, 曾松祥, 王立祥. 轴流泵变轴向速度的研究及试验[A]. 船舶喷水推进及轴流式推进泵论文集[C]. 上海:中国船舶工业集团公司第708研究所, 1991: 172-179.
[22] 马丁·宋贝, 刘尚培. “伯努利升力原理”批判[J]. 力学与实践, 1993, 15(4).
[23] 康顺, 王仲奇. 拓扑方法在叶栅三元流动分析中的应用(II):表面摩擦力矢量场和截面流线矢量场图画的拓扑分析[J]. 应用数学和力学, 1990, 11(12).
[24] Zangeneh M, Goto A, Harada H. On the Design Criteria for Suppression of Secondary Flows in Centrifugal and Mixed Flow Impellers[J]. Journal of Turbomachinery, 1997, 120(4): 723-735. * 收稿日期:2015-08-08;修订日期:2015-10-24。基金项目:国家自然科学基金(51409127);江苏省自然科学基金(BK20151342);流体及动力机械教育部重点试验室 (西华大学)开放课题资助(szjj2015-018)。作者简介:王洋,男,研究员,研究领域为流体机械微机在线测试与控制技术。E-mail: pgwy@ujs.edu.cn(编辑:史亚红)
|