[1] 张天平, 唐福俊, 田华兵, 等. 电推进航天器的特殊环境及其影响[J]. 航天器环境工程, 2007, 24(2):88-94.
[2] 田立成, 郭宁, 龙建飞, 等. LHT-100霍尔推力器宽功率范围工作实验研究[J]. 推进技术, 2014, 35(9):1283-1289. (TIAN Li-cheng, GUO Ning, LONG Jian-fei, et al. Experimental Study of LHT-100 Hall Thruster Operation in the Wide Power Range[J]. Journal of Propulsion Technology, 2014, 35(9): 1283-1289.)
[3] 田立成, 王小永, 张天平. 空间电推进应用及技术发展趋势[J]. 火箭推进, 2015, 41(3): 7-14.
[4] Manzella D, Jankovsky R, Elliott F, et al. Hall Thruster Plume Measurements on-Board the Russian Express Satellites[R]. NASA/TM-2001-211217.
[5] Sitnikova N, Volkov D, Maximov I, et al. Hall Effect Thruster Interactions Data From the Russian Express-A2 and Express-A3 Satellites[R]. NASA/CR-2003-212005.
[6] Colbert T S, Day M, Fischer G, et al. Plan and Status of the Development and Qualification Program for Stationary Plasma Thruster[C]. Monterey: Joint Propulsion Conference and Exhibit, 1993.
[7] Bugrova A I, Kim V P, Maslennikov N A, et al. Physical Processes and Characteristics of Stationary Plasma Thrusters with Closed Electron Drift[C]. Viareggio: 22nd International Electric Propulsion Conference, 1991.
[8] Barkalov E E, Veselovzorov A N, Pogorelov A A, et al. Composition of the Beam of an SPT-100 Stationary Plasma Thruster[J]. Instruments and Experimental Techniques, 2008, 51(2): 263-267.
[9] Taccogna, Longo, Capitelli. Very-Near-Field Plume Simulation of a Stationary Plasma Thruster[J]. European Physical Journal Applied Physics, 2004, 28(1): 113-122.
[10] Gascon N, Dudeck M, Barral S. Wall Material Effects in Stationary Plasma Thrusters, I: Parametric Studies of an SPT-100[J]. Physics of Plasmas, 2003, 10(10):4123-4136.
[11] Sekerak M J, Longmier B W, Gallimore A D, et al. Azimuthal Spoke Propagation in Hall Effect Thrusters[J]. IEEE Transactions on Plasma Science, 2015, 43(1):72-85.
[12] Lazurenko A, Vial V, Bouchoule A, et al. Dual-Mode Operation of Stationary Plasma Thrusters[J]. Journal of Propulsion and Power, 2015, 22(1): 38-475.
[13] Kim V. Main Physical Features and Processes Determining the Performance of Stationary Plasma Thrusters[J]. Journal of Propulsion and Power, 2015, 14(5): 736-743.
[14] Day M, Maslennikov N, Randolph T, et al. SPT-100 Subsystem Qualification Status[R]. AIAA 96-2713.
[15] Lyszyk M, Klinger E, Secheresse O, et al. PPS 1350 Plasma Thruster Qualification Status[C]. Amsterdam Netherlands: 50th International Astronautical Congress, 1999.
[16] Pidgeon D, Corey R, Sauer B, et al. Two Years of on-Orbit Performance of SPT-100 Electric Propulsion[C]. San Diego: AIAA International Communications Satellite Systems Conference, 2006.
[17] Darnon F. The SPT-100 Plasma Plume and its Interaction with a Spacecraft, from Modeling to Ground and Flight Characterization[J]. Zeitschrift Für Orthopdie Und Ihre Grenzgebiete, 2013, 115(6): 305-311.
[18] Nadiradze A B, Obukhov V A, Popov G A. Electric Propulsion Plasma Plume Interaction with “Phobos-Soil” Spacecraft Structural Components[J]. Acta Astronautica, 2009, 64(9-10): 979-987.
[19] 田立成, 高俊, 李兴坤, 等. LHT-100自励磁霍尔推力器热特性测试和热真空实验研究[J]. 推进技术, 2016, 37(4): 793-800. (TIAN Li-cheng, GAO Jun, LI Xing-kun, et al. Experimental Study of Thermal Characteristics and Thermal Vacuum of LHT-100 Self-Excited Hall Thruster[J]. Journal of Propulsion Technology, 2016, 37(4): 793-800.)
[20] 田立成, 龙建飞, 郭宁, 等. 卫星敏感区域霍尔推力器束流沉积污染模型[J]. 真空科学与技术学报, 2013, 33(9): 883-887.
[21] 田立成, 石红, 李娟, 等. 二次电子发射对稳态等离子体推进器加速通道鞘层的影响[J]. 固体火箭技术, 2012, 35(2): 193-197.
[22] 赵成仁, 顾左, 田立成, 等. LHT-100霍尔推力器滤波设计与放电震荡关系研究[J]. 真空, 2015, 52(1): 63-66.
[23] 田立成, 赵成仁, 孙小菁. 电推进器在GEO静止卫星上的安装策略[J]. 真空, 2014, 51(2): 70-73.
[24] 田立成, 郭宁, 顾左, 等. 超大型航天器应用电推进系统方案设计[J]. 真空, 2014, 51(5): 68-73.
[25] Randolph T, Kim V, Kaufman H, et al. Facility Effects on Stationary Plasma Thruster Testing[C]. Seattle: 23rd International Electric Propulsion Conference, 1993.
[26] 达道安. 真空设计手册[M]. 北京:国防科技出版社, 2004. * 收稿日期:2017-02-15;修订日期:2017-04-08。基金项目:重点实验室基金(9140C5504041001)。作者简介:田立成,男,硕士,高级工程师,研究领域为空间电推进技术、航天器充电及电位主动控制技术等。 E-mail:tlc1676@163.com(编辑:梅瑛)
|