[1] 李俊, 刘波, 杨小东, 等. 基于CST方法的吸附式压气机叶型及抽吸方案耦合优化设计[J]. 推进技术, 2015, 36(1): 9-16. (LI Jun, LIU Bo, YANG Xiao-dong, et al. Coupling Optimization Design for Aspirated Compressor Airfoil and Aspirated Scheme Based on CST Method[J]. Journal of Propulsion Technology, 2015, 36(1): 9-16.)
[2] 岳连捷, 叶青, 徐显坤, 等. 三面压缩高超进气道附面层抽吸研究[J]. 航空动力学报, 2012, 27(2):272-278.
[3] 袁化成, 梁德旺. 抽吸对高超声速进气道起动能力的影响[J]. 推进技术, 2006, 27(6): 525-528. (YUAN Hua-cheng, LIANG De-wang. Effects of Bleed to the Starting Ability of Hypersonic Inlet[J]. Journal of Propulsion Technology, 2006, 27(6): 525-528.)
[4] 严红明, 钟兢军, 韩吉昂, 等. 超声速进气道喉部附面层抽吸[J]. 推进技术, 2009, 30(2): 175-181. (YAN Hong-ming, ZHONG Jing-jun, HAN Ji-ang, et al. Research on Boundary-Layer Suction in the Throat of Supersonic Inlet[J]. Journal of Propulsion Technology, 2009, 30(2): 175-181.)
[5] 陈德华, 王瑞波, 刘光远, 等. 2.4m跨声速风洞槽壁试验段调试及流场校验[J]. 实验流体力学, 2013, 27(4).
[6] 陈植, 易仕和, 周勇为. 基于喉部边界层抽吸高超声速静风洞喷管设计[C]. 安徽黄山: 第十四届全国激波与激波管学术会议(下册), 2010.
[7] Holger Babinsky, Hideaki Ogawa. SBLI Control for Wings and Inlets[J]. Shock Waves, 2008, 18(2): 89-96.
[8] McLafferty G M, Ranard E. Pressure Losses and Flow Coefficients of Slanted Perforations Discharging from within a Simulated Supersonic Inlet[R]. USA: United Aircraft Corporation Report R-0920-1, 1958.
[9] Cubbison R W, Meleason E T, Johtson D F. Effect of Porous Bleed in a High-Performance Axisymmetric, Mixed Compression Inlet at Mach 2.50[R]. USA: NASA Lewis Research Center TM X-1692, 1968.
[10] Sanders B W, Cubbison R W. Effect of Bleed-System Back Pressure and Porous Area on the Performance of an Axisymmetric Mixed Compression Inlet at Mach 2.50[R]. USA: NASA Lewis Research Center TM X-1710, 1968.
[11] Wasserbauer J F, Choby D A. Mach 2.5 Performance of a Bicone Inlet with Internal Focused Compression [R]. USA: NASA Lewis Research Center TM X-2294, 1971.
[12] Wasserbauer J F, Shaw R J, Neumann H E. Minimizing Boundary Layer Bleed for a Mixed Compression Inlet[R]. USA: NASA Lewis Research Center TM X-71461, 1973.
[13] Wasserbauer J F, Shaw R J, Neumann H E. Design of a Very-Low-Bleed Mach 2.5 Mixed Compression Inlet with 45 Co潮浴?扣牴????扒牝? USA: NASA Lewis Research Center TM X-3135, 1975.
[14] Hamed A, Lehnigt T. Investigation of Oblique Shock/Boundary-Layer Bleed Interaction[J]. AIAA Journal, 1992, 8(2): 418-424.
[15] Hamed A, Lehnigt T. Effect of Bleed Configuration on Shock/Laminar Boundary-Layer Interactions[J]. AIAA Journal, 1995, 11(1): 42-48.
[16] Hamed A, Morell A, Bellamkonda G. Three-Dimensional Simulations of Bleed- Hole Rows/Shock-Wave/ Turbulent Boundary-Layer Interactions[R]. AIAA 2013-0804.
[17] Hahn T O, Shiht T I-P, Chyu W J. Numerical Study of Shock-Wave/Boundary-Layer Interactions with Bleed[J]. AIAA Journal, 1993, 31(5): 869-876.
[18] Morris M J, Sajben M, Kroutil J C. Experimental Investigation of Normal Shock/Turbulent Boundary Layer Interactions with and without Mass Removal[J]. AIAA Journal, 1992, 30(2): 359-366.
[19] Harloff G J, Smith G E. Supersonic-Inlet Boundary-Layer Bleed Flow[R]. NASA- CR-195426, 1995.
[20] Stanewsky E, Delery J, Fulker J, et al. Drag Reduction by Shock and Boundary Layer Control[R]. USA: Results of the Project EUROSHOCK II, Notes on Numerical Fluid Mechanics, 2002.
[21] Rimlingert M J, Shih T I-R, Chyu W J. Three-Dimensional Shock-Wave/Boundary-Layer Interactions with Bleed Through a Circular Hole[R]. AIAA 92-3084.
[22] Shih T I-R, Rimlingert M J. Three-Dimensional Shock-Wave/Boundary-Layer Interactions with Bleed[J]. AIAA Journal, 1993, 31(10): 1819-1826.
[23] A Hamed, Yeuan J J, Junt Y D. Flow Characteristics in Boundary-Layer Bleed Slots with Plenum[J]. AIAA Journal, 1996, 12(2): 231-236.
[24] Chyu W J, Rimlingert M J, Shih T I-R. Control of Shock-Wave/Boundary-Layer Interactions by Bleed[J].AIAA Journal, 1995, 33(7): 1239-1241.
[25] Rimlinger M J, Shih T I-R, Chyu W J. Shock-Wave/Boundary-Layer Interactions with Bleed Through Rows of Holes[J]. AIAA Journal, 1996, 12(2): 217-224.(编辑:史亚红) * 收稿日期:2016-07-02;修订日期:2016-09-19。基金项目:国家自然科学基金(11572347;11372347)。作者简介:赵健,男,硕士生,研究领域为高超声速进气道流动机理。E-mail: zhaojianaaaa@126.c |