[1] Xinyi Yang, Wei Shen, Shan Pan. A Novel Gas Turbine Engine Health Status Estimation Method Using Quantum-Behaved Particle Swarm Optimization[J].Mathematical Problems in Engineering, 2014, (3): 1-11.
[2] 邓明, 金业壮. 航空发动机故障诊断[M]. 北京: 北京航空航天大学出版社, 2012: 102-105.
[3] Tan H S. Fourier Neural Networks and Generalized Single Hidden Layer Networks in Aircraft Engine Fault Diagnostics[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(4): 773-782.
[4] Romessis C, Mathioudakis K. Bayesian Network Approach for Gas Path Fault Diagnosis[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(1): 64-72.
[5] Sang-Myeong Lee, Tae-Seong Roh, Dong-Whan Choi. Defect Diagnostics of SUAV Gas Turbine Engine Using Hybrid SVM-Artificial Neural Network Method[J]. Journal of Mechanical Science and Technology, 2009, 23(2): 559-568.
[6] Sang-Myeong Lee, Won-Jun Choi, Tae-Seong Roh. A Study on Separate Learning Algorithm Using Support Vector Machine for Defect Diagnostics of Gas Turbine Engine[J]. Journal of Mechanical Science and Technology, 2008, 22(12): 2489-2497.
[7] Sadough Vanini Z N, Khorasani K, Meskin N. Defect Detection and Isolation of a Dual Spool Gas Turbine Engine Using Dynamic Neural Networks and Multiple Model Approach[J]. Information Sciences, 2014 , 259(2): 234-251.
[8] 徐启华, 耿帅, 师军. 基于大规模训练集SVM的发动机故障诊断[J]. 航空动力学报, 2011, 26(12): 2841-2848.
[9] 徐启华, 师军, 耿帅. 应用快速多分类SVM的航空发动机故障诊断方法[J]. 推进技术, 2012, 33(6):961-967. (XU Qi-hua, SHI Jun, GENG Shuai. Aero-Engine Fault Diagnosis by a New Fast Multi-Class Support Vector Algorithm[J]. Journal of Propulsion Technology, 2012, 33(6): 961-967.)
[10] 胡金海, 谢寿生, 杨帆, 等. 基于支持向量机的组合分类方法及应用[J]. 推进技术, 2007, 28(6):669-673. (HU Jin-hai, XIE Shou-sheng, YANG Fan, et al. Ensemble of Classification Methods Based on SVM and Its Application in Diagnosis[J]. Journal of Propulsion Technology, 2007, 28(6): 669-673.)
[11] Huang G B, Ding X, Zhou H. Optimization Method Based Extreme Learning Machine for Classification[J]. Neurocomputing, 2010, 74(1-3): 155-163.
[12] 张英堂, 马超尹, 尹刚, 等. 基于多极限学习机集成的柴油机故障诊断方法研究[J]. 车用发动机, 2012, 6: 85-89.
[13] Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew. Extreme Learning Machine: Theory and Applications[J]. Neurocomputing, 2006, 70(1-3): 489-501.
[14] Huang G-Bin, Zhou H, Ding X, et al. Extreme Learning Machine for Regression and Multiclass Classification[J]. IEEE Trans.Systems, Man, and Cybernetics, 2012, 42(2): 513-529.
[15] 李业波, 李秋红, 黄向华, 等. 航空发动机气路部件故障融合诊断方法研究[J]. 航空学报, 2014, 35(6):1612-1622.
[16] 李业波, 李秋红, 黄向华, 等. 航空发动机传感器故障与部件故障诊断技术[J]. 北京航空航天大学学报, 2013, 39(9): 1174-1180.
[17] Xinyi Yang, Shan Pang, Wei Shen, et al. Aero Engine Fault Diagnosis Using an Optimized Extreme Learning Machine[J]. International Journal of Aerospace Engineering, 2016, (1): 1-10.
[18] Hinton G, Salakhutdinov R. Reducing the Dimensionality of Data with Neural Networks[J]. Science, 2006, 313(504).
[19] Vincent P, Larochelle H, Bengio Y, et al. Extracting and Composing Robust Features with Denoising Autoencoders[C]. Helsinki: Proceedings of the International Conference on Machine Learning, 2008: 1096-1103.
[20] Hinton G E, Krizhevsky A, Wang S. Transforming Auto-Encoders[C]. Espoo: Proceedings of the International Conference on Artificial Neural Networks, 2011: 44-51.
[21] Schmidhuber J. Deep Learning in Neural Networks: An Overview[J]. Neural Networks, 2015, 61(1): 85-117.
[22] 余凯, 贾磊, 陈雨强, 等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展, 2013, 50(9): 1799-1804.
[23] 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年:回顾与展望[J]. 计算机学报, 2016, 39(5): 1-21.
[24] Prasanna Tamilselvan, Pingfeng Wang. Failure Diagnosis Using Deep Belief Learning Based Health State Classification[J]. Reliability Engineering and System Safety, 2013, 115(1): 124-135.
[25] 李本威, 林学森, 杨欣毅. 深度置信网络在发动机部件性能退化故障诊断中的应用研究[J]. 推进技术, 2016, 37(11). (LI Ben-wei, LIN Xue-seng, YANG Xin-yi. Research on the Application of Deep Belief Network in Aero Engine Component Performance Deterioration Fault Diagnosis[J]. Journal of Propulsion Technology, 2016, 37(11).)
[26] 雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(1): 49-56.
[27] Noel Lopes, Bernardete Ribeiro. Towards Adaptive Learning with Improved Convergence of Deep Belief Network on Graphics Processing Units[J]. Pattern Recognition, 2014, 47(1): 114-127.
[28] Liyanaarachchi Lekamalage Chamara Kasun, Hongming Zhou, Guang-Bin Huang. Representational Learning with ELMs for Big Data[J]. IEEE Intelligent Systems, 2013, 28(6): 31-34.
[29] Cortes C, Vapnik V. Support Vector Networks[J]. Machine Learning, 1995, 20(3): 273-297.
[30] Huang G B, Zhou H, Ding X, et al. Extreme Learning Machine for Regression and Multiclass Classification[J]. IEEE Trans.Syst.Man, Cybern.B, Cybern, 2012, 42(2): 513-529.
[31] Jiexiong Tang, Chenwei Deng, Huang G B. Extreme Learning Machine for Multilayer Perception[J]. IEEE Transactions of Neural Network and Learning Systems, 2015, 27(4): 809-821.(编辑:梅瑛) * 收稿日期:2016-06-05;修订日期:2016-08-23。基金项目:山东省自然科学基金(ZR2016FQ19)。作者简介:逄珊,女,硕士,讲师,研究领域为模式识别理论与应用。E-mail: pangshanpp@163.com
|