[1] Zhou Z, Zhang Y, Tierney J W, et al. Hybrid Zirconia Catalysts for Conversion of Fischer-Tropsch Waxy Products to Transportation Fuels[J]. Fuel Processing Technology, 2003, 83(1-3): 67-80.
[2] Yan P, Tao Z, Hao K, et al. Effect of Impregnation Methods on Nickel-Tungsten Catalysts and Its Performance on Hydrocracking Fischer-Tropsch Wax[J]. Journal of Fuel Chemistry and Technology, 2013, 41(6): 691-697.
[3] Sarkari M, Fazlollahi F, Ajamein H, et al. Catalytic Performance of an Iron-Based Catalyst in Fischer-Tropsch Synthesis[J]. Fuel Processing Technology, 2014, 127: 163-170.
[4] Díaz J A, Akhavan H, Romero A, et al. Cobalt and Iron Supported on Carbon Nanofibers as Catalysts for Fischer-Tropsch Synthesis[J]. Fuel Processing Technology, 2014, 128: 417-424.
[5] Huffman G P. Incorporation of Catalytic Dehydrogenation into Fischer-Tropsch Synthesis of Liquid Fuels from Coal to Minimize Carbon Dioxide Emissions[J]. Fuel, 2011, 90(8): 2671-2676.
[6] Huffman G P. Zero Emissions of CO2 During the Production of Liquid Fuel from Coal and Natural Gas by Combining Fischer-Tropsch Synthesis with Catalytic Dehydrogenation[J]. Fuel, 2013, 109: 206-210.
[7] 孙予罕, 陈建刚, 王俊刚, 等. 费托合成钴基催化剂的研究进展[J]. 催化学报, 2010, 31(8): 919-927.
[8] Antonovski V, Rotavera B, Petersen E, et al. Combustion Measurements of Synthetic Fuels at Gas Turbine Conditions[C]. Cincinnati: AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2007.
[9] Kumar K, Sung C. A Comparative Experimental Study of the Autoignition Characteristics of Alternative and Conventional Jet Fuel/Oxidizer Mixtures[J]. Fuel, 2010, 89(10): 2853-2863.
[10] Wang H, Oehlschlaeger M A. Autoignition Studies of Conventional and Fischer-Tropsch Jet Fuels[J]. Fuel, 2012, 98: 249-258.
[11] Kumar K, Sung C, Hui X. Laminar Flame Speeds and Extinction Limits of Conventional and Alternative Jet Fuels[J]. Fuel, 2011, 90(3): 1004-1011.
[12] Naik C V, Puduppakkam K V, Modak A, et al. Detailed Chemical Kinetic Mechanism for Surrogates of Alternative Jet Fuels[J]. Combustion and Flame, 2011, 158(3): 434-445.
[13] Thomas A E, Saxena N T, Shouse D T, et al. Heating and Efficiency Comparison of a Fischer-Tropsch (FT) Fuel, JP-8+100, and Blends in a Three-Cup Combustor Sector[J]. Isrn Mechanical Engineering, 2012, 2012: 1439-1447.
[14] 黄勇. 燃烧与燃烧室[M]. 北京:北京航空航天大学出版社, 2009.
[15] 霍伟业, 林宇震, 张弛, 等. 正癸烷作为航空煤油雾化过程代理燃料的研究[J]. 航空动力学报, 2016, 31(1): 188-195.
[16] Leclercq P, Aigner M. Impact of Alternative Fuels Physical Properties on Combustor Performance[C]. USA: Triennial International Conference on Liquid Atomization and Spray Systems, 2009.
[17] Yule A J, Chinn J J. The Internal Flow and Exit Conditions of Pressure Swirl Atomizers[J]. Atomization and Sprays, 2000, 10(2): 121-146.
[18] Lefebvre A H, Ballal D R. Gas Turbine Combustion: Alternative Fuels and Emissions[M]. Boca Raton:CRC Press, 2010.
[19] Chen L, Liu Z, Sun P, et al. Formulation of a Fuel Spray SMD Model at Atmospheric Pressure Using Design of Experiments (DoE)[J]. Fuel, 2015, 153: 355-360.
[20] Sahu J N, Acharya J, Meikap B C. Response Surface Modeling and Optimization of Chromium(VI) Removal from Aqueous Solution Using Tamarind Wood Activated Carbon in Batch Process[J]. Journal of Hazardous Materials, 2009, 172(2-3): 818-825.
[21] Dou-Sheng Z, Wen L, Ya-Ping L, et al. Establishment and Optimization of an HPTLC Method for the Analysis of Gatifloxacin and Related Substances by Design of Experiment[J]. JPC Journal of Planar Chromatography Modern TLC, 2013, 26(3): 215-225.
[22] 王延胜, 林宇震, 李林, 等. 中心分级燃烧室点火性能试验研究[J]. 推进技术, 2016, 37(1): 98-104. (WANG Yan-sheng, LIN Yu-zhen, LI Lin, et al. Experimental Investigation on Ignition Performance of Internally-Staged Combustor[J]. Journal of Propulsion Technology, 2016, 37(1): 98-104.)(编辑:朱立影) * 收稿日期:2016-07-12;修订日期:2016-09-03。基金项目:国家自然科学基金(51306010);北京市自然科学基金(3152020)。作者简介:高晓会,男,硕士生,研究领域为航空替代燃料。E-mail: leather_999@163.com
|