[1] Ciezki H K, Negri M, Hurttlen J, et al. Overview of the German Gel Propulsion Technology Program[R]. AIAA 2014-3794.
[2] Natan B, Rahimi S. The Status of Gel Propellants in Year 2000[J]. International Journal of Energetic Materials & Chemical Propulsion, 2002, (5): 1-6.
[3] Arnold R, Santos P H S, Campanella O H, et al. Rheological and Thermal Behavior of Gelled Hydrocarbon Fuels[J]. Journal of Propulsion and Power, 2011, 27(1): 151-162.
[4] 曹琪, 封锋, 武晓松. 时间与温度依赖的RP-1煤油凝胶本构方程建模[J]. 含能材料, 2016, 24(6): 592-598.
[5] 龚静芝, 封锋, 邓寒玉, 等. 石蜡基凝胶燃料的制备及性能表征[J]. 含能材料, 2016, 24(6): 560-564.
[6] Shai Rahimi , Benveniste Natan. Numerical Solution of the Flow of Power-Law Gel Propellants in Converging Injectors[J]. Propellants, Explosives, Pyrotechnics, 2000, 25(4): 203-212.
[7] Changjin Yoon. Injector Flow Characteristics for Gel Propellants[R]. AIAA 2011-5707.
[8] 曹琪, 封锋, 武晓松, 等. 凝胶推进剂供给管流的压降数值研究[J]. 推进技术, 2014, 35(5): 701-707. (CAO Qi, FENG Feng, WU Xiao-song, et al. Numerical Study on Pressure Loss for Gel Propellants Supply Pipeline[J]. Journal of Propulsion Technology, 2014, 35(5): 701-707.)
[9] 邓寒玉, 封锋, 武晓松, 等. 基于锥形喷注器的凝胶推进剂流变特性数值研究[J]. 推进技术, 2014, 35(11): 1551-1557. (DENG Han-yu, FENG Feng, WU Xiao-song, et al. Numerical studies on Rheological Characteristics of Gel Propellant with Regard to Tapered Injectors[J]. Journal of Propulsion Technology, 2014, 35(11): 1551-1557.)
[10] 陈杰, 封锋, 马虎, 等. 基于PIV的凝胶模拟液撞击雾化速度场实验研究[J]. 推进技术, 2014, 35(4): 565-569. (CHEN Jie, FENG Feng, MA Hu, et al. Experimental Study on Impinging Velocimetry of Gel Simulants Based on PIV[J]. Journal of Propulsion Technology, 2014, 35(4): 565-569.)
[11] 刘虎, 强洪夫, 王广. 凝胶推进剂射流撞击雾化研究进展[J]. 含能材料, 2015, 23(7), 697-708.
[12] Guildenbecher D R, López-Rivera C, Sojka P E. Secondary Atomization[J]. Experiments in Fluids, 2009, 46(3): 371-402.
[13] Joseph D D, Beavers G S, Funada T. Rayleigh–Taylor Instability of Viscoelastic Drops at High Weber Numbers[J]. Journal of Fluid Mechanics, 2002, 453: 109-132.
[14] Joseph D D, Belanger J, Beavers G S. Breakup of a Liquid Drop Suddenly Exposed to a High-Speed Airstream[J]. International Journal of Multiphase Flow, 1999, 25(6): 1263-1303.
[15] Rivera C. Secondary Breakup of Inelastic Non-Newtonian Liquid Drops[D]. Indiana: Purdue University, 2010.
[16] Snyder S. Secondary Atomization of Elastic Non-Newtonian Liquid Drops[D]. Indiana: Purdue University, 2011.
[17] Zhao H, Liu H F, Cao X K, et al. Breakup Characteristics of Liquid Drops in Bag Regime by a Continuous and Uniform Air Jet Flow[J]. International Journal of Multiphase Flow, 2011, 37(5): 530-534.
[18] Zhao H, Liu H F, Xu J L, et al. Experimental Study of Drop Size Distribution in the Bag Breakup Regime[J]. Industrial & Engineering Chemistry Research, 2011, 50(16): 9767-9773.
[19] Zhao H, Liu H F, Xu J L, et al. Secondary Breakup of Coal Water Slurry Drops[J]. Physics of Fluids, 2011, 23(11).
[20] Zhao H, Hou Y B, Liu H F, et al. Influence of Rheological Properties on Air-Blast Atomization of Coal Water Slurry[J]. Journal of Non-Newtonian Fluid Mechanics, 2014, 211: 1-15.
[21] 邓寒玉, 封锋, 武晓松, 等. 基于扩展TAB模型的凝胶液滴二次雾化特性研究[J]. 推进技术, 2015, 36(11): 1734-1740. (DENG Han-yu, FENG Feng, WU Xiao-song, et al. Characteristics of Second Atomization for Gelled Droplet Based on Extended TAB Model[J]. Journal of Propulsion Technology, 2015, 36(11): 1734-1740.)
[22] 孔上峰, 封锋, 邓寒玉. 气流中煤油凝胶液滴变形破碎过程的试验[J]. 推进技术, 2017, 38(12): 2857-2864. (KONG Shang-feng, FENG Feng, DENG Han-yu. Experiment on Breakup of a Gelled Kerosene Droplet in Air Jet Flow[J]. Journal of Propulsion Technology, 2017, 38(12): 2857-2864.)
[23] Wierzba A, Takayama K. Experimental Investigation of the Aerodynamic Breakup of Liquid Drops[J]. AIAA Journal, 1988, 26(11): 1329-1335.
[24] Arcoumanis C, Whitelaw D S, Whitelaw J H. Breakup of Droplets of Newtonian and Non-Newtonian Fluids[J].Atomization and Spray, 1996, (6): 245-256.
[25] Shraiber A A, Podvysotsky A M, Dubrovsky V V. Deformation and Breakup of Drops by Aerodynamic Forces[J]. Atomization & Sprays, 1996, 6(6): 667-692.
[26] Taylor G I. The Shape and Acceleration of a Drop in a High Speed Air Stream[J]. The Scientific Papers of GI Taylor, 1963, (3): 457-464.
[27] Orourke P J, Amsden A A. The TAB Method for Numerical Calculation of Spray Droplet Breakup[C]. Toronto: Presented at the International Fuels and Lubricants Meeting and Exposition, 1987.
[28] Ranger A A, Nicholls J A. Aerodynamic Shattering of Liquid Drops[J]. AIAA Journal, 1969, 7(2): 285-290.
[29] 金仁瀚, 刘勇, 朱冬清, 等. 连续均匀气流中单液滴破碎特性试验[J]. 推进技术, 2016, 37(2): 273-280. (JIN Ren-han, LIU Yong, ZHU Dong-qing, et al. Experimental Investigations of Breakup Characteristic of Single Droplet in Continuous Uniform Airflow[J]. Journal of Propulsion Technology, 2016, 37(2): 273-280.)
[30] Park S W, Kimb S, Chang S L. Breakup and Atomization Characteristics of Mono-Dispersed Diesel Droplets in a Cross-Flow Air Stream[J]. International Journal of Multiphase Flow, 2006, 32(7): 807-822.
[31] Hsiang L P, Faeth G M. Drop Deformation and Breakup Due to Shock Wave and Steady Disturbances[J]. International Journal of Multiphase Flow, 1995, 21(4): 545-560.
[32] Pilch M, Erdman C A. Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid Drop[J]. International Journal of Multiphase Flow, 1987, 13(6): 741-757.
[33] Reinecke W, Waldman G. Shock Layer Shattering of Cloud Drops in Reentry Flight[R]. AIAA 75-75. * 收稿日期:2016-09-04;修订日期:2016-10-12。基金项目:航天科技创新基金(CASC03-02);中央高校基本科研业务费专项基金(30920140112001)。作者简介:邓寒玉,男,博士生,研究领域为凝胶推进剂的雾化与燃烧。E-mail: dhy19890120@163.com通讯作者:封锋,男,博士,副教授,研究领域为航空航天推进理论与工程。E-mail: nust203@aliyun.com(编辑:朱立影)
|