[1] Chupp R E, Hendricks R C, Lattime S B, et al. Sealing in Turbomachinery[J]. Journal of Propulsion and Power, 2006, 22(2): 313-349.
[2] 贾惟, 刘火星. 涡轮叶栅叶冠泄漏流动数值研究[J]. 推进技术, 2013, 34(3): 316-325. (JIA Wei, LIU Huo-xing. Numerical Investigation of Shroud Leakage Flow in Turbine Cascade [J]. Journal of Propulsion Technology, 2013, 34(3): 316-325.)
[3] 纪国剑. 航空发动机典型篦齿封严泄漏特性的数值和实验研究[D]. 南京:南京航空航天大学, 2008.
[4] Halila E E, Lenahan D T, Thomas T T. Energy Efficient Engine High Pressure Turbine Test Hardware: Detailed Design Report [R]. CR-167955, 1982.
[5] Cherry D, Wadia A, Beacock R, et al. Analytical Investigation of a Low Pressure Turbine with and without Flowpath Endwall Gaps, Seals and Clearance Features [R]. ASME 2005-GT-68492.
[6] Hills N J. Whole Turbine CFD Modeling[R]. ASME GT 2007-27918.
[7] Denton J D. Some Limitations of Turbomachinery CFD [R]. ASME GT 2010-22540.
[8] Green T, Turner A B. Ingestion into the Upstream Wheelspace of an Axial Turbine Stage[J]. Journal of Turbomachinery, 1994, 116(2): 327-332.
[9] Bohn D, Decker A, Ma H, et al. Influence of Sealing Air Mass Flow on the Velocity Distribution in and Inside the Rim Seal of the Upstream Cavity of a 1.5-Stage Turbine[R]. ASME GT 2003-38459.
[10] Johnson B V, Jakoby R, Bohn D, et al. A Method for Estimating the Influence of Time-Dependent Vane and Blade Pressure Fields on Turbine Rim Seal Ingestion [R]. ASME GT 2006-90853.
[11] 马宏伟, Bohn D E, Decher A, et al. 涡轮级轮缘封严内非定常流场的准三维LDV测量 [J]. 航空动力学报, 2004, 19(4): 454-458.
[12] 陶加银, 高庆, 宋立明, 等. 基于附加示踪变量法的涡轮轮缘密封非定常封严特性研究[J]. 工程热物理学报, 2014, 35(11): 2154-2158.
[13] Chew J W, Green T, Turner A B. Rim Sealing of Rotor-Stator Wheelspaces in the Presence of External Flow [R]. ASME 94-GT-126.
[14] Bohn D, Rudzinski B, Surken N, et al. Experimental and Numerical Investigation of the Influence of Rotor Blades on Hot Gas Ingestion into the Upstream Cavity of an Axial Turbine Stage [R]. ASME 2000-GT-284.
[15] Jakoby R, Zirer T, Lindblad K, et al. Numerical Simulation of the Unsteady Flow Field in an Axial Gas Turbine Rim Seal Configuration[R]. ASME GT 2004-53829.
[16] ZHANG Jing-hui, MA Hong-wei. Unsteady Numerical Investigation for Effects of Rim Sealing Flow on Performance of a Turbine Rotor[J]. Journal of Propulsion Technology, 2014, 35(4): 470-477.
[17] 高庆, 李军. 涡轮蜂窝面径向轮缘密封封严性能的数值研究[J]. 推进技术, 2016, 37(5): 937-944. (GAO Qing, LI Jun. Numerical Investigation on Sealing Performance of Turbine Honeycomb Radial Rim Seal [J]. Journal of Propulsion Technology, 2016, 37(5): 937-944.)
[18] 朱莉娅, 罗祥, 徐国强, 等. 涡轮级燃气入侵的理论分析及数值模拟[J]. 推进技术, 2014, 35(11): 1511-1516. (ZHU Li-ya, LUO Xiang, XU Guo-qiang, et al. A Theoretical and Numerical Study of Turbine Rim Seal Ingestion [J]. Journal of Propulsion Technology, 2014, 35(11): 1511-1516.)
[19] 吴康, 任静, 蒋洪德, 等. 整级透平中转静轮缘封严问题研究[J]. 工程热物理学报, 2014, 35(5): 873-877.
[20] 周昆原, 罗翔, 徐国强. 旋转诱导燃气入侵的数值模拟[J]. 航空动力学报, 2011, 26(2): 2704-2709.
[21] de la Rosa Blanco E, Hodson H P. Effect of Upstream Platform Geometry on the Endwall Flows of a Turbine Cascade [R]. ASME GT 2005-68938.
[22] Popovic I, Hodson H P. Aerothermal Impact of the Interaction between Hub Leakage and Mainstream Flows in Highly-Loaded HP Turbine Blades[J]. Journal of Turbomachinery, 2013, 135(6): 061014-1-061014-11.
[23] Popovic I, Hodson H P, Janke E, et al. The Effects of Unsteadiness and Compressibility on the Interaction Between Hub Leakage and Mainstream Flows in HP Turbines[J]. Journal of Turbomachinery, 2013, 135(6): 061015-1-061015-10.
[24] Popovic I, Hodson H P. The Effects of a Parametric Variation of the Rim Seal Geometry on the Interaction Between Hub Leakage and Mainstream Flows in HP Turbines [R]. ASME GT 2012-68025.
[25] Popovic I, Hodson H P. Improving Turbine Stage Efficiency and Sealing Effectiveness through Modifications of the Rim Seal Geometry [J]. Journal of Turbomachinery, 2013, 135(6).
[26] Schuler P, Kurz W, Dullenkopf K, et al. The Influence of Different Rim Seal Geometries on Hot-Gas Ingestion and Total Pressure Loss in a Low-Pressure Turbine[R].ASME GT 2010-22205.
[27] Schuler P, Dullenkopf K, Bauer H-J. Investigation of the Influence of Different Rim Seal Geometries in a Low-Pressure Turbine[R]. ASME GT 2011-45682.
[28] 周杨, 牛为民, 邹正平, 等. 轮毂封严气体对高压涡轮二次流动的影响[J]. 推进技术, 2006, 27(6): 515-520. (ZHOU Yang, NIU Wei-min, ZOU Zheng-ping, et al. Effects of Coolant Injection from Rim Seals on Secondary Flow in a High-Pressure Turbine[J]. Journal of Propulsion Technology, 2006, 27(6): 515-520.)
[29] Zlatinov M B, Tan C S, Montgomery M, et al. Turbine Hub and Shroud Sealing Flow Loss Mechanisms[R]. ASME GT 2011-46718.
[30] Schuepbach P. Influence of Rim Seal Purge Flow on the Performance of an End Wall Profiled Axial Turbine [D].Zurich: Swiss Federal Institute of Technology, 2009.
[31] Behr T. Control of Rotor Tip Leakage and Secondary Flow by Casing Air Injection in Unshrouded Axial Turbines[D]. Dresden: Dresden University of Technology, 2007.
[32] Marini R, Girgis S. The Effect of Blade Leading Edge Platform Shape on Upstream Disk Cavity to Mainstream Flow Interaction of a High-Pressure Turbine Stage[R]. ASME GT 2007-27429.
[33] Zlatinov M B, Tan C S, Montgomery M, et al. Turbine Hub and Shroud Sealing Flow Loss Mechanisms[R]. ASME GT 2011-46718.
[34] Harris M, Kapat J. Purge and Mainstream Flow Interaction Control by Means of Platform Circumferential Contouring [R]. AIAA 2011-5563.
[35] Reid K, Denton J, Pullan G, et al. Reducing the Performance Penalty Due to Turbine Inter-Platform Gaps [R].ASME GT 2006-90839.
[36] Reid K, Denton J, Pullan G, et al. The Interaction of Turbine Inter-Platform Leakage Flow with the Mainstream Flow[J]. Journal of Turbomachinery, 2007, 129(2): 303-310.
[37] Wei J, Huoxing L. Numerical Investigation of the Interaction Between Upstream Purge Flow and Mainstream in a Highly-Loaded Turbine[R]. ASME GT 2014-25501.(编辑:史亚红) * 收稿日期:2016-09-07;修订日期:2016-10-28。基金项目:国家自然科学基金委员会与中国民用航空局联合资助项目(U1633113);中央高校基本科研业务费中国民航大学专项 (3122017086)。作者简介:贾惟,男,博士,助理研究员,研究领域为叶轮机气动热力学。E-mail: caucjiawei@163.com
|