[1] Sharma O P, Butler T L. Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades[J]. Journal of Turbomachinery, 1987, 109(2): 229-236.
[2] Zess G A, Thole K A, Zess G A. Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane[J]. Journal of Turbomachinery, 2001, 124(2): 167-175.
[3] Becz S, Majewski M S, Langston L S. Leading Edge Modification Effects on Turbine Cascade Endwall Loss[R]. ASME GT 2003-38898.
[4] 季路成, 程荣辉, 邵卫卫, 等. 最大负荷设计之:角区分离预测与控制[J]. 工程热物理学报, 2007, 28(2):219-222.
[5] 季路成, 田勇, 李伟伟, 等. 叶身/端壁融合技术研究[J]. 航空发动机, 2012, 38(6): 5-10.
[6] 田勇, 季路成, 李伟伟, 等. 叶身/端壁融合技术工况的适用性[J]. 航空动力学报, 2013, 28(8): 1905-1913.
[7] 田勇, 季路成, 邵卫卫, 等. 叶身融合技术在涡轮中的应用[J]. 航空动力学报, 2015, 30(12): 2949-2959.
[8] 伊卫林, 陈志民, 季路成, 等. 离心压气机叶身/端壁融合技术应用初探[J]. 工程热物理学报, 2014, (2):256-261.
[9] 伊卫林, 陈志民, 马季, 等. 叶身融合在径向扩压器中的应用初探[J]. 工程热物理学报, 2015, (6):1213-1217.
[10] 彭学敏, 季路成, 伊卫林, 等. 高负荷压气机叶栅的叶身/端壁融合研究[J]. 工程热物理学报, 2014, (2):242-246.
[11] 康顺, 孙丽萍. 叶根倒角对离心叶轮气动性能的影响[J]. 工程热物理学报, 2009, (1): 41-43.
[12] 石龑, 李少军, 李军, 等. 动叶栅倒角对透平级气动性能的影响[J]. 航空动力学报, 2010, 25(8):1842-1848.
[13] 王大磊, 朴英, 陈美宁. 叶根倒角对轴流涡轮转子流场的影响[J]. 航空动力学报, 2011, 26(9): 2075-2081.
[14] Sauer H, Mu?Ller R, Vogeler K. Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the Endwall[J]. Journal of Turbomachinery, 2000, 123(2): 207-213.
[15] Gregory-Smith D, Bagshaw D, Ingram G, et al. Using Profiled Endwalls, Blade Lean and Leading Edge Extensions to Minimize Secondary Flow[R]. ASME GT 2008-50811.
[16] Shi Y, Li J, Feng Z, et al. Influence of Rotor Blade Fillets on Aerodynamic Performance of Turbine Stage[R]. ASME GT 2010-23721.
[17] Müller R, Sauer H, Vogeler K, et al. Influencing the Secondary Losses in Compressor Cascades by a Leading Edge Bulb Modification at the Endwall[R]. ASME GT 2002-30442.
[18] Müller R, Vogeler K, Sauer H, et al. Endwall Boundary Layer Control in Compressor Cascades[R]. ASME GT 2004-53433.
[19] Pieringer P, Sanz W, Pieringer P. Influence of the Fillet Between Blade and Casing on the Aerodynamic Performance of a Transonic Turbine Vane[R]. ASME GT 2004-53119.
[20] Kügeler E, Weber A, Nürnberger D, et al. Influence of Blade Fillets on the Performance of a 15 Stage Gas Turbine Compressor[R]. ASME GT 2008-50748.
[21] Mahmood G I, Acharya S. Experimental Investigation of Secondary Flow Structure in a Blade Passage with and without Leading Edge Fillets[J]. Journal of Fluids Engineering, 2007, 129(3): 253-262.
[22] Sung C, Lin C. Numerical Investigation on the Effect of Fairing on the Vortex Flows around Airfoil/Flat-Plate Junctures[R]. AIAA 88-0615.
[23] 刘波, 管继伟, 陈云永, 等. 用端壁造型减小涡轮叶栅二次流损失的数值研究[J]. 推进技术, 2008, 29(3): 355-359. (LIU Bo, GUAN Ji-wei, CHEN Yun-yong, et al. Numerical Investigation for Effect of Non-Axisymmetric Endwall Profiling on Secondary Flow in Turbine Cascade[J]. Journal of Propulsion Technology, 2008, 29(3): 355-359.)
[24] Reutter O, Hemmert-Pottmann S, Hergt A, et al. Endwall Contouring and Fillet Design for Reducing Losses and Homogenizing the Outflow of a Compressor Cascade[R]. ASME GT 2014-25277.
[25] 张燕峰. 高载荷压气机端壁流动及其控制策略研究[D]. 西安:西北工业大学, 2010.
[26] 李相君, 楚武利, 张皓光. 高负荷轴流压气机叶栅二次流动与损失关联性探讨[J]. 推进技术, 2014, 35(7): 914-925. (LI Xiang-jun, CHU Wu-li, ZHANG Hao-guang. Investigation on Relation Between Secondary Flow and Loss on a High Loaded Axial-Flow Compressor Cascade[J]. Journal of Propulsion Technology, 2014. 35(7): 914-925.)
[27] Lei V M, Spakovszky Z S, Greitzer E M. A Criterion for Axial Compressor Hub-Corner Stall[J]. Journal of Turbomachinery, 2008, 130(3): 475-486.
[28] Reising S, Schiffer H P, Reising S. Non-Axisymmetric End Wall Profiling in Transonic Compressors, Part II: Design Study of a Transonic Compressor Rotor Using Non-Axisymmetric End Walls-Optimization Strategies and Performance[R]. ASME GT 2009-59134.(编辑:朱立影) * 收稿日期:2016-09-07;修订日期:2016-10-25。基金项目:国家自然科学基金(51576162);国家自然科学基金重点项目(51536006)。作者简介:李兰攀,男,硕士生,研究领域为流体机械及工程。E-mail: 1175020351@qq.com
|