[1] Han J, Dutta S, Ekkad S. Gas Turbine Heat Transfer and Cooling Technology [M]. USA: CRC Press, 2012.
[2] Bogard D G. Gas Turbine Film Cooling[J]. Journal of Propulsion and Power, 2006, 22(2): 249-270.
[3] Findlay M J, Salcudean M, Gartshore I S. Jets in a Crossflow: Effects of Geometry and Blowing Ratio[J]. Journal of Fluids Engineering, 1999, 121(2): 373-378.
[4] Kohli A, Bogard D G. Adiabatic Effectiveness, Thermal Fields, and Velocity Fields for Film Cooling with Large Angle Injection[J]. Journal of Turbomachinery, 1997, 119(2): 352-358.
[5] Baldauf S A, Scheurlen M, Schulz A, et al. Correlation of Film Cooling Effectiveness from Thermographic Measurements at Engine Like Conditions[J]. Journal of Turbomachinery, 2002, 124(4): 686-698.
[6] Haven B A, Yamagata D K, Kurosaka M, et al. Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness[R]. ASME 97-GT-045.
[7] Lemmon C A, Kohli A, Thole K A. Formation of Counter-Rotating Vortices in Film-Cooling Flows[J]. ASME 99-GT: 161.
[8] Goldstein R J, Eckert E, Burggraf F. Effects of Hole Geometry and Density on Three-Dimensional Film Cooling[J]. International Journal of Heat and Mass Transfer, 1974, 17(5): 595-607.
[9] Bunker R S. A Review of Shaped Hole Turbine Film-Cooling Technology[J]. Journal of Heat Transfer, 2005, 127(4): 441-453.
[10] 戴萍, 林枫. 横向槽结构对气膜冷却效果影响的数值研究[J]. 推进技术, 2011, 32(2): 253-260. (DAI Ping, LIN Feng. Numerical Investigation on the Influence of Transverse slot Configurations on Film Cooling Effect[J]. Journal of Propulsion Technology, 2011, 32(2): 253-260.)
[11] Heidmann J D, Kassab A J, Divo E A, et al. Conjugate Heat Transfer Effects on a Realistic Film-Cooled Turbine Vane[R]. ASME GT 2003-38553.
[12] Na S, Shih T I. Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp[J]. Journal of Heat Transfer, 2007, 129(4): 464-471.
[13] Barigozzi G, Franchini G, Perdichizzi A. The Effect of an Upstream Ramp on Cylindrical and Fan-Shaped Hole Film Cooling, Part I: Aerodynamic Results[R]. ASME GT 2007-27077.
[14] 何立明, 蒋永健, 康强, 等. 利用上游斜坡改善气膜冷却效率的数值研究[J]. 推进技术, 2009, 30(1): 9-13. (HE Li-ming, JIANG Yong-jian, KANG Qiang, et al. Numerical Investigation on Improving Film Cooling Effectiveness with an Upstream Ramp[J]. Journal of Propulsion Technology, 2009, 30(1): 9-13.)
[15] Sakai E, Takahashi T, Agata Y. Experimental Study on Effects of Internal Rib and Rear Bump on Film Effectiveness[R]. ASME TURBO-12-1116.
[16] Funazaki K, Nakata R, Kawabata H, et al. Improvement of Flat-Plate Film Cooling Performance by Double Flow Control Devices, Part I: Investigations on Capability of a Base-Type Device[R]. ASME GT 2014-25751.
[17] Rigby D L, Heidmann J D. Improved Film Cooling Effectiveness by Placing a Vortex Generator Downstream of Each Hole[R]. ASME GT 2008-51361.
[18] Milanovic I, Zaman K B M Q. Fluid Dynamics of Highly Pitched and Yawed Jets in Crossflow[J]. AIAA Journal, 2004, 42(5): 874-882.
[19] Shinn A F, Vanka S P. Large Eddy Simulations of Film-Cooling Flows with a Micro-Ramp Vortex Generator [J].Journal of Turbomachinery, 2013, 135(1).(编辑:朱立影) * 收稿日期:2016-09-08;修订日期:2016-09-27。基金项目:国家自然科学基金(51676149)。作者简介:宋英杰,男,博士生,研究领域为叶轮机械气动热力学与优化设计。E-mail: yingjie.song@stu.xjtu.edu.cn通讯作者:宋立明,男,博士,副教授,研究领域为叶轮机械气动优化设计。E-mail: songlm@mail.xjtu.edu.cn
|