[1] Edwards T. Cracking and Deposition Behavior of Supercritical Hydrocarbon Aviation Fuels[J]. Combustion Science and Technology, 2006, 178(1): 307-334.
[2] Huang He, Spadaccini L J, Sobel D R. Fuel-Cooled Thermal Management for Advanced Aeroengines[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(2): 284-293.
[3] Jackson J D, Hall W B. Forced Convection Heat Transfer to Fluids at Supercritical Pressure[C]. New York: Hemisphere Publishing Corporation, 1979: 563-611.
[4] Jackson J D, Hall W B. Influences of Buoyancy on Heat Transfer to Fluids Flowing in Vertical Tubes under Turbulent Conditions [C]. New York: Hemisphere Publishing Corporation, 1979: 613-640.
[5] JIANG Pei-xue, ZHANG Yu, XU Yi-jun, et al. Experimental and Numerical Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Tube at Low Reynolds Numbers[J]. International Journal of Thermal Sciences, 2008, 47(8): 998-1011.
[6] JIANG Pei-xue, ZHANG Yu, ZHAO Chen-ru, et al. Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Mini Tube at Relatively Low Reynolds Numbers [J]. Experimental Thermal and Fluid Science, 2008, 32(8): 1628-1637.
[7] Pidaparti S, McFarland J. Effect of Buoyancy on Heat Transfer Characteristics of Supercritical Carbon Dioxide in the Heating Mode [R]. AIAA 2014-3359.
[8] LIU Bo, ZHU Yin-hai, YAN Jun-jie, et al. Experimental Investigation of Convection Heat Transfer of n-Decane at Supercritical Pressures in Small Vertical Tubes[J]. International Journal of Heat and Mass Transfer, 2015, 91: 734-746.
[9] 赵国柱, 宋文艳, 张若凌, 等. 超临界压力下正十烷流动传热的数值模拟[J]. 推进技术, 2014, 35(4):537-543. (ZHAO Guo-zhu, SONG Wen-yan, ZHANG Ruo-ling, et al. Numerical Simulation on Flow and Heat Transfer of n-Decane under Supercritical Pressure[J]. Journal of Propulsion Technology, 2014, 35(4): 537-543.)
[10] Hitch B, Karpuk M. Experimental Investigation of Heat Transfer and Dlow Instabilities in Supercritical Fuels [R]. AIAA 97-3043.
[11] Hitch B, Karpuk M. Enhancement of Heat Transfer and Elimination of Flow Oscillations in Supercritical Fuels[R]. AIAA 98-3759.
[12] Ambrosini W, Sharabi M. Dimensionless Parameters in Stability Analysis of Heated Channels with Fluids at Supercritical Pressures[J]. Nuclear Engineering and Design, 2008, 238(8): 1917-1929.
[13] Sharabi M, Ambrosini W, He S, et al. Transient Three-Dimensional Stability Analysis of Supercritical Water Reactor Rod Bundle Subchannels by a Computatonal Fluid Dynamics Code[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(2).
[14] Ambrosini W. On the Analogies in the Dynamic Behaviour of Heated Channels with Boiling and Supercritical Fluids[J]. Nuclear Engineering and Design, 2007, 237(11): 1164-1174.
[15] Ambrosini W. Discussion on the Stability of Heated Channels with Different Fluids at Supercritical Pressures [J]. Nuclear Engineering and Design, 2009, 239(12): 2952-2963.
[16] Hunt S, Heister S D. Thermoacoustic Oscillations in Supercritical Fuel Flows[R]. AIAA 2014-3973.
[17] Stewart E, Stewart P, Watson A. Thermo-Acoustic Oscillations in Forced Convection Heat Transfer to Supercritical Pressure Water[J]. International Journal of Heat and Mass Transfer, 1973, 16(2): 257-270.
[18] 王彦红, 李素芬, 东明, 等. 超临界压力航空煤油热声振荡与传热恶化实验研究[J]. 推进技术, 2016, 37(3): 401-410. (WANG Yan-hong, LI Su-fen, DONG Ming, et al. Experimental Studies on Thermoacoustic Oscillation and Heat Transfer Deterioration of Aviation Kerosene under Supercritical Pressure[J]. Journal of Propulsion Technology, 2016, 37(3): 401-410.)
[19] YAN Jun-jie, ZHU Yin-hai, LU Ze-long, et al. Transient Response of Supercritical Pressure Hydrocarbon Fuels during Heating Condition[J]. CIESC Journal, 2015, 66(S1): 65-70. 收稿日期:2016-10-10;修订日期:2016-10-28。基金项目:国家自然科学基金创新群体科学基金(51621062);国家自然科学基金重点项目(51536004)。作者简介:严俊杰,男,博士生,研究领域为超临界压力碳氢燃料。E-mail: yanjj13@mails.tsinghua.edu.cn通讯作者:姜培学,男,教授,研究领域为超临界压力碳氢燃料。E-mail: jiangpx@mail.tsinghua.edu.cn(编辑:史亚红)
|