[1] 邹正平, 刘火星, 唐海龙, 等. 高超声速航空发动机强预冷技术研究[J]. 航空学报, 2015, 36(8): 2544-2562.
[2] 贺旭照, 张勇, 汪广元, 等. 高超声速飞行器单壁膨胀喷管的自动优化设计[J]. 推进技术, 2007, 28(2): 148-151. (HE Xu-zhao, ZHANG Yong, WANG Guang-yuan, et al. Automated Design Optmization of Single Expansionramp Nozzle for Hypersonic Vehicle [J]. Journal of Propulsion Technology, 2007, 28(2): 148-151.)
[3] Tanatusgu N, Sato T, Naruo Y, et al. Development Study on ATREX Engine[J]. Acta Astronautica, 1997, 41(12): 165-170.
[4] 郭婷, 苏杭, 赵耀中. 预冷吸气式火箭发动机用换热器研制进展[J]. 军民两用技术与产品, 2014, 12(1): 48-51.
[5] 王娟, 刘业奎, 聂嵩, 等. 国内外复合预冷发动机预冷器发展思路及研制进展[C]. 遵义:第十一届全国低温工程大会, 2013.
[6] Wang Z G, Wang Y, Zhang J Q, et al. Overview of the Key Technologies of Combined Cycle Engine Precooling Systems and the Advanced Applications of Micro-Channel Heat Transfer[J]. Aerospace Science & Technology, 2014, 39(2): 31-39.
[7] Tang M, Chase R. The Quest for Hypersonic Flight with Air-Breathing Propulsion[C]. Dayton: 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2008.
[8] Varvill R. Heat Exchanger Development at Reaction Engines Ltd[J]. Acta Astronautica, 2010, 66(9): 1468-1474.
[9] 秦飞, 吕翔, 刘佩进, 等. 火箭基组合推进研究现状与前景[J]. 推进技术, 2010, 31(6): 660-665. (QIN Fei, LV Xiang, LIU Pei-jin, et al. Research Status and Perspective of Rocket Based Combined Cycle Propulsion System[J]. Journal of Propulsion Technology, 2010, 31(6): 660-665.)
[10] 黄生洪, 何洪庆, 何国强, 等. 火箭基组合循环(RBCC)推进系统概念设计模型[J]. 推进技术, 2003, 24(1): 1-5. (HUANG Sheng-hong, HE Hong-qing, HE Guo-qiang, et al. Conceptual Design Model of Rocket Base Combined Cycle Propulsion System[J]. Journal of Propulsion Technology, 2003, 24(1): 1-5.)
[11] 王永寿. 利用凝缩性物质减轻空气预冷器结霜的研究[J]. 飞航导弹, 2005, 4(2): 52-60.
[12] Yao X, Song Y, Jiang L. Applications of Bio-Inspired Special Wettable Surfaces[J]. Advanced Materials, 2011, 23(6): 719-34.
[13] Xu Q, Li J, Tian J, et al. Energy-Effective Frost-Free Coatings Based on Superhydrophobic Aligned Nanocones[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 8976-8980.
[14] Kim A, Lee C, Kim H, et al. Simple Approach to Superhydrophobic Nanostructured Al for Practical Antifrosting Application Based on Enhanced Self-Propelled Jumping Droplets[J]. ACS Applied Materials & Interfaces, 2015, 7(13): 7206-7213.
[15] Zhang Q, He M, Chen J, et al. Anti-Icing Surfaces Based on Enhanced Self-Propelled Jumping of Condensed Water Microdroplets[J]. Chemical Communications, 2013, 49(40).
[16] Kreder M J, Alvarenga J, Kim P, et al. Design of Anti-icing Surfaces: Smooth, Textured or Slippery?[J]. Nature Reviews Materials, 2016, 1(1): 1-15.
[17] Bengaluru Subramanyam S, Kondrashov V, Ruhe J, et al. Low Ice Adhesion on Nano-Textured Superhydrophobic Surfaces under Supersaturated Conditions[J]. ACS Applied Materials & Interfaces, 2016, 8(20).
[18] Guo P, Zheng Y, Wen M, et al. Icephobic/Anti-Icing Properties of Micro/Nanostructured Surfaces[J]. Advanced Materials, 2012, 24(24).
[19] Hao Q, Pang Y, Zhao Y, et al. Mechanism of Delayed Frost Growth on Superhydrophobic Surfaces with Jumping Condensates: More Than Interdrop Freezing[J]. Langmuir, 2014, 30(51).
[20] Chen X, Ma R, Zhou H, et al. Activating the Microscale Edge Effect in a Hierarchical Surface for Frosting Suppression and Defrosting Promotion[J]. Scientific Reports, 2013, 3(8): 1-8.
[21] Xia Y M, Zhang Y F, Yu XQ, et al. Low-Temperature Solution Growth of ZnO Nanocone/Highly Oriented Nanorod Arrays on Copper[J]. The Journal of Physical Chemistry, 2014, 118(41).
[22] Xia Y M, Zhang Y F, Yu X Q, et al. Direct Solution Phase Fabrication of ZnO Nanostructure Arrays on Copper at Near Room Temperature[J]. Crystengcomm, 2014, 16(24): 5394-5401. 收稿日期:2016-09-30;修订日期:2016-10-25。基金项目:国家自然科学基金(51671055;51676033);国家重点研发计划(2016YFC0700304);江苏省自然科学基金 (BK20151135);江苏省六大人才高峰项目(2015-JNHB-005)。作者简介:张友法,男,博士,副教授,研究领域为超浸润表面。E-mail: yfzhang@seu.edu.cn(编辑:朱立影)
|