[1] Rogers R C. A Study of the Mixing of Hydrogen Injected Normal to a Supersonic Airstream[R]. NASA TN D-6114, 1971.
[2] Rogers R C. Mixing of Hydrogen Injected from Multiple Injectors Normal to a Supersonic Airstream[R]. NASA TN D-6476, 1971.
[3] Orth R C, Schetx J A, Billig F S. The Interaction and Penetration of Gaseous Jets in Supersonic Flow[R]. NASA CR-1368, 1967.
[4] Northam G B, Anderson G Y. Survey of Supersonic Combustion Ramjet Research at Langley[R]. AIAA 86-37079.
[5] Ebrahimi H B, Malo-Molina F J, Gaitonde D V. Numerical Simulation of Injection Strategies In a Cavity-Based Supersonic Combustor [J]. Journal of Propulsion and Power, 2012, 28(5): 991-999.
[6] Gruber M R, Donbar J M, Carter C D. Mixing and Combustion Studies Using Cavity-Based Flameholders in a Supersonic Flow[J]. Journal of Propulsion and Power, 2004, 20, (5): 769-778.
[7] Hsu K Y, Carter C, Crafton J, et al. Fuel Distribution About a Cavity Flameholder in Supersonic Flow[R]. AIAA 2000-3585.
[8] Yamauchi H, Choi B, Takae K, et al. Flowfield Characteristics of a Transverse Jet into Supersonic Flow with Pseudo-Shock Wave[J]. Shock Waves, 2012(22): 533-545.
[9] Micka D J, Driscoll J F. Combustion Characteristics of a Dual-Mode Scramjet Combustor with Cavity Flame Holder[J]. Proceedings of the Combustion Institute, 2009(32): 2397-2404.
[10] Fotia M L, Driscol J F. Ram-Scram Transition and Flame/Shock-Train Interactions in a Model Scramjet Experiment [J]. Journal of Propulsion and Power, 2013, 29, (1): 261-273.
[11] Tatman B J, Rockwell R D, Goyne C P, et al. Experimental Study of Vitiation Effects on Flameholding in a Cavity Flameholder[J]. Journal of Propulsion and Power, 2013, 29, (2): 417-423.
[12] Donohue J M. Dual-Mode Scramjet Flameholding Operability Measurements[J]. Journal of Propulsion and Power, 2014, 30, (3): 592-603.
[13] 田野, 乐嘉陵, 杨顺华, 等. 空气节流对超燃燃烧室流场结构与燃料混合影响的数值研究[J]. 推进技术, 2013, 34(1): 54-61. (TIAN Ye, LE Jia-ling, YANG Shun-hua, et al. Numerical Study on Air Throttling Influence of Flow Structure and Fuel-Air Mixing in Scramjet Combustor[J]. Journal of Propulsion Technology, 2013, 34(1): 54-61.)
[14] 郭帅帆, 宋文艳, 李建平, 等. 燃烧加热污染空气对超燃冲压发动机性能影响研究[J]. 推进技术, 2013, 34(4): 493-498. (GUO Shuai-fan, SONG Wen-yan, LI Jian-ping, et al. Numerical Investigation of Effects of Vitiation Air on Scramjet Performance[J]. Journal of Propulsion Technology, 2013, 34(4): 493-498.)
[15] Settles G S, Baca B K, Williams D R, et al. A Study of Reattachment of a Free Shear Layer in Compressible Turbulent Flow[R]. AIAA 80-1408.
[16] McDaniel J C, Fletcher D G, Hartfield R J, et al. Transverse Injection into Mach 2 Flow behind a Rearward-Facing Step-A 3-D, Compressible Flow Test Case for Hypersonic Combustor CFD Validation[R]. AIAA 92-31693.
[17] Heisie W H, Pratt D T. Hypersonic Airbreathing Propulsion[M]. Washington: AIAA Education Series, 1993. 收稿日期:2015-10-13;修订日期:2015-12-03。基金项目:高超声速冲压发动机技术重点实验室开放课题(STSKFKT2012002)。作者简介:王宇航,男,博士生,研究领域为航空宇航推进理论与工程。E-mail: wyh19910905@sina.com(编辑:朱立影)
|