[1] Neuber H. Theory of Notch Stresses: Principles for Exact Calculation of Strength with Reference to Structural Form and Material[M]. Oak Ridge, Tennessee: USAEC Office of Technical Information, 1961.
[2] Adib-Ramezani H, Jeong J. Advanced Volumetric Method for Fatigue Life Prediction Using Stress Gradient Effects at Notch Roots[J]. Computational Materials Science, 2007, 39: 694-663.
[3] Morel F, Palin-Luc T. A Non-local Theory Applied to High Cycle Multiaxial Fatigue[J]. Fatigue & Fracture of Engineering Materials & Structures, 2002, 25: 649-665.
[4] Molski K, Glinka G. A Method of Elastic-Plastic Stress and Strain Calculation at a Notch Root[J]. Materials Science and Engineering, 1981, 50: 93-100.
[5] Neuber H. Theory of Stress Concentration for Shear-Strained Prismatical Bodies with Arbitrary Nonlinear Stress-Strain Law[J]. ASME, Journal of Applied Mechanics, 1961, 28: 544-550.
[6] 袁善虎, 王延荣, 魏大胜. 考虑应力松弛的缺口疲劳寿命预测方法[J], 推进技术, 2014, 35(5): 681-687. (YUAN Shan-hu, WANG Yan-rong, WEI Da-sheng. Method for Fatigue Life Prediction of Notched Specimen with Considered Stress Relaxation[J]. Journal of Propulsion Technology, 2014, 35(5): 681-687.)
[7] Taylor D. Geometrical Effects in Fatigue: a Unifying Theoretical Model[J]. International Journal of Fatigue, 1999, 21: 413-420.
[8] Taylor D. A Mechanistic Approach to Critical-Distance Methods in Notch Fatigue[J]. Fatigue & Fracture of Engineering Materials & Structures, 2001, 24: 215-224.
[9] Qylafku G, Azari Z, Gjonaj M, et al. On the Fatigue Failure and Life Prediction for Notched Specimens[J]. Materials Science, 1998, 34(5): 604-618.
[10] Susmel L, Taylor D. A Novel Formulation of the Theory of Critical Distances to Estimate Lifetime of Notched Components in the Medium-Cycle Fatigue Regime[J]. Fatigue & Fracture of Engineering Materials & Structures, 2007, 30(7): 567-581.
[11] Seweryn A, Mroz Z. On the Criterion of Damage Evolution for Variable Multiaxial Stress States[J]. International Journal of Solid structures, 1998, 35(14): 1589-1616.
[12] Susmel L. Taylor D. A Simplified Approach to Apply the Theory of Critical Distances to Notched Components under Torsional Fatigue Loading[J]. International Journal of fatigue, 2006, 28: 417-430.
[13] Shang De-Guang, Wang Da-Kang, Li Ming, et al. Local Stress-Strain Field Intensity Approach to Fatigue Life Prediction under Random Cyclic Loading[J]. International Journal of Fatigue, 2001, 23: 903-910.
[14] Banvillet A, Palin-Luc T, Lasserre S. A Volumetric Energy Based High Cycle Multiaxial Fatigue Criterion[J]. International Journal of Fatigue, 2003, 23: 903-910.
[15] Slowik J, Lagoda T. The Fatigue Life Estimation of Estimation with Circumferential Notch under Uniaxial State of Loading[J]. International Journal of Fatigue, 2011, 33: 1304-1312.
[16] Lagoda T, Macha E. Energy Approach to Fatigue under Combined Cyclic Bending with Torsion of Smooth and Notched Specimens[J]. Materials Science, 1998, 34(5): 630-639.
[17] Radaj D, Vormwand M. Advanced Methods of Fatigue Assessment[M]. Heidelberg: Springer-Verlag, 2013.
[18] 商体松, 赵明, 陈养惠. 基于三参数幂函数的低周疲劳寿命预测方法研究[J], 推进技术, 2015, 36(6): 907-911. (SHANG Ti-song, ZHAO Ming, CHEN Yang-hui. Low Cycle Fatigue Life Prediction Method Based on Three Parameter Power Function[J]. Journal of Propulsion Technology, 2015, 36(6): 907-911.)
[19] Morrow J. Cyclic Plastic Strain Energy and Fatigue of Metals[C]. Chicago: A Symposium Presented at the 67th Annual meeting, Internal Friction, Damping, and Cyclic Plastic-ASTM STP378, 1964. 收稿日期:2015-11-17;修订日期:2016-01-11。基金项目:中国博士后科学基金资助项目(2015M581112)。作者简介:袁善虎,男,博士,研究领域为燃气轮机结构强度振动与可靠性。E-mail: huzi5i1@163.com(编辑:张荣莉)
|