[1] Park S W, Schapery R A. A Viscoelastic Constitutive Model for Particulate Composites with Growing Damage[J]. International Journal of Solids and Structures, 1997, 34(8): 931-947.
[2] Kakavas P A. Mechanical Properties of Propellant Composite Materials Reinforced with Ammonium Perchlorate Particles[J]. International Journal of Solids and Structures, 2014, 51(10): 2019-2026.
[3] 隋欣, 魏志军, 王宁飞, 等. 炮射导弹发射过程发动机装药强度分析[J]. 弹道学报, 2009, 21(2): 19-22.
[4] 隋欣, 魏志军, 王宁飞, 等. 炮射导弹发射过程中装药衬垫材料对抗过载能力的影响计算分析[J]. 兵工学报, 2009, 30(6): 709-713.
[5] Zalewski R, Wolszakiewicz T. Analysis of Uniaxial Tensile Tests for Homogeneous Solid Propellants under Various Loading Conditions[J]. Central European Journal of Energetic Materials, 2011, 8(4): 223-231.
[6] 王鸿利, 鞠玉涛, 许进升, 等. 基于损伤型本构高过载下装药强度数值仿真方法研究[J]. 推进技术, 2014, 35(5): 708-713. (WANG Hong-li, JU Yu-tao, XU Jin-sheng, et al. Research on Numerical Simulation Method of Grain Strength Based on Damage Constitutive Model under High Overload[J]. Journal of Propulsion Technology, 2014, 35(5): 708-713.)
[7] Sui X, Wang N, Wan Q, et al. Effects of Relaxed Modulus on the Structure Integrity of NEPE Propellant Grains during High Temperature Aging[J]. Propellants Explosives Pyrotechnics, 2010, 35(6): 535-539.
[8] Deng B, Xie Y, Tang G. Three-Dimensional Structural Analysis Approach for Aging Composite Solid Propellant Grains[J]. Propellants Explosives Pyrotechnics, 2014, 39(1): 117-124.
[9] 胡少青, 鞠玉涛, 韦震, 等. HTPB/IPDI弹性体的粘超弹本构模型研究[J]. 固体火箭技术, 2014, 37(3): 387-390, 395.
[10] Xu J, Chen X, Wang H, et al. Thermo-Damage-Viscoelastic Constitutive Model of HTPB Composite Propellant[J]. International Journal of Solids and Structures, 2014, 51(18): 3209-3217.
[11] Duncan E J S, Margetson J. A Nonlinear Viscoelastic Theory for Solid Rocket Propellants Based on a Cumulative Damage Approach[J]. Propellants Explosives Pyrotechnics, 1998, 23(2): 94-104.
[12] Swanson S R, Christensen L W. A Constitutive Formulation for High-Elongation Propellants[J]. Journal of Spacecraft and Rockets, 1983, 20(6): 559-566.
[13] Wang Zh, Qiang H, Wang G, et al. Tensile Mechanical Properties and Constitutive Model for HTPB Propellant at Low Temperature and High Strain Rate[J]. Journal of Applied Polymer Science, 2015, 132(24).
[14] Wang Zh, Qiang H, Wang G. Experimental Investigation on High Strain Rate Tensile Behaviors of HTPB Propellant at Low Temperatures[J]. Propellants Explosives Pyrotechnics, 2015, 40(8).
[15] Ho S Y. High Strain-Rate Constitutive Models for Solid Rocket Propellants[J]. Journal of Propulsion and Power, 2002, 18(5): 1106-1111.
[16] 常新龙, 赖建伟, 张晓军, 等. HTPB推进剂高应变率粘弹性本构模型研究[J]. 推进技术, 2014, 35(1): 123-127. (CHANG Xin-long, LAI Jian-wei, ZHANG Xiao-jun, et al. High Strain-Rate Viscoelastic Constitutive Model for HTPB Propellant[J]. Journal of Propulsion Technology, 2014, 35(1): 123-127.)
[17] Siviour C R, Laity P R, Proud W G, et al. High Strain Rate Properties of a Polymer-Bonded Sugar: Their Dependence on Applied and Internal Constraints[J]. Proceedings of the Royal Society A Mathematical, 2008, 464(2093): 1229-1255.
[18] Wood P K C, Schley C A, Mcgregor I, et al. Characterising Performance of Automotive Materials at High Strain Rate for Improved Crash Design[J]. Journal De Physique IV, 2006, 134(1): 1167-1174.
[19] Xu Sh, Ruan D, Beynon J, et al. Dynamic Tensile Behaviour of TWIP Steel under Intermediate Strain Rate Loading[J]. Materials Science and Engineering A, 2013, 573(23): 132-140.
[20] Paul S K, Raj A, Biswas P, et al. Tensile Flow Behavior of Ultra Low Carbon, Low Carbon and Micro Alloyed Steel Sheets for Auto Application under Low to Intermediate Strain Rate[J]. Materials and Design, 2014, 57(5): 211-217.
[21] Huh H, Lim J H, Park S H. High Speed Tensile Test of Steel Sheets for the Stress-Strain Curve at the Intermediate Strain Rate[J]. International Journal of Automotive Technology, 2009, 10(2): 195-204.
[22] Mohotti D, Ali M, Ngo T, et al. Strain Rate Dependent Constitutive Model for Predicting the Material Behaviour of Polyurea under High Strain Rate Tensile Loading[J]. Materials and Design, 2014, 53(1): 830-837.
[23] Raman S N, Ngo T, Lu J, et al. Experimental Investigation on the Tensile Behavior of Polyurea at High Strain Rates[J]. Materials and Design, 2013, 50(17): 124-129.
[24] Chou S C, Robertson K D, Rainey J H. The Effect of Strain Rate and Heat Developed During Deformation on the Stress-Strain Curve of Plastics[J]. Experimental Mechanics, 1973, 13(10): 422-432.
[25] Siviour C R, Walley S M, Proud W G, et al. The High Strain Rate Compressive Behaviour of Polycarbonate and Polyvinylidene Difluoride[J]. Polymer, 2005, 46(26): 12546-12555.
[26] Mulliken A D, Boyce M C. Mechanics of the Rate-Dependent Elastic-Plastic Deformation of Glassy Polymers from Low to High Strain Rates[J]. International Journal of Solids and Structures, 2006, 43(5): 1331-1356.
[27] Jordan J L, Foley J R, Siviour C R. Mechanical Properties of Epon 826/DEA Epoxy[J]. Mechanics of Time-Dependent Materials, 2008, 12(3): 249-272.
[28] Yi J, Boyce M C, Lee G F, et al. Large Deformation Rate-Dependent Stress-Strain Behavior of Polyurea and Polyurethanes[J]. Polymer, 2006, 47(1): 319-329.
[29] Walley S M, Field J E, Pope P H, et al. A Study of the Rapid Deformation Behaviour of a Range of Polymers[J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 1989, 328(328): 1-33.
[30] Walley S M, Field J E, Pope P H, et al. The Rapid Deformation Behaviour of Various Polymers[J]. Journal De Physique III, 1991, 1(12): 1889-1925.
[31] Walley S M, Field J E. Strain Rate Sensitivity of Polymers in Compression from Low to High Rates[J]. DYMAT, 1994, 1(3): 211-227.
[32] Bergstr?m J S, Boyce M C. Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers[J]. Journal of the Mechanics & Physics of Solids, 1998, 46(5): 931-954.
[33] Bergstr?m J S, Boyce M C. Constitutive Modeling of the Time-Dependent and Cyclic Loading of Elastomers and Application to Soft Biological Tissues[J]. Mechanics of Materials, 2001, 33(9): 523-530.
[34] Yang L, Shim V P W, Lim C T. A Visco-Hyperelastic Approach to Modelling the Constitutive Behavior of Rubber[J]. International Journal of Impact Engineering, 2000, 24(6): 545-560.
[35] Shim V P W, Yang L, Lim C T, et al. A Visco-Hyperelastic Constitutive Model to Characterize both Tensile and Compressive Behavior of Rubber[J]. Journal of Applied Polymer Science, 2004, 92(1): 523-531.
[36] Pouriayevali H, Guo Y B, Shim V P W. A Constitutive Description of Elastomer Behavior at High Strain Rates-A Strain-Dependent Relaxation Time Approach[J]. International Journal of Impact Engineering, 2012, 47(4), 71-78.
[37] Khajehsaeid H, Arghavani J, Naghdabadi R, et al. A Visco-Hyperelastic Constitutive Model for Rubber-Like Materials: A Rate-Dependent Relaxation Time Scheme[J]. International Journal of Engineering Science, 2014, 79(6): 44-58.
[38] Zhang J, Zheng J, Chen X, et al. A Thermovisco-Hyperelastic Constitutive Model of NEPE Propellant over a Large Range of Strain Rates[J]. Journal of Engineering Materials and Technology, 2014, 136(3): 337-346.
[39] Song B, Chen W. One-Dimensional Dynamic Compressive Behavior of EPDM Rubber[J]. Journal of Engineering Materials and Technology, 2003, 125(3): 294-301.
[40] Michael Lai W, Rubin D, Krempl E. Introduction to Continuum Mechanics[M]. USA: Butterworth Heinemann, 1999. 收稿日期:2015-11-24;修订日期:2016-01-05。基金项目:国家自然科学基金(11402025)。作者简介:杨龙,男,博士生,研究领域为固体装药结构完整性分析与实验。E-mail: 3120110039@bit.edu.cn(编辑:梅瑛)
|