[1] Mach E. Uber den Verlauf von Funkenwellen in der Ebeneund im Raume[J]. Sitzugsbr Akad Wiss Wien,1878,78: 819-838.
[2] Von Neumann J. Oblique Reflection of Shocks[R]. Explos Res Report 12, 1943.
[3] Von Neumann J. Refraction, Intersection and Reflection of Shock Waves[R]. Navord Report 203-45, 1943.
[4] Hornung H G, Oetel H, Sandemann R J. Transition to Mach Reflection of Shock Waves in Steady and Pseudosteady Flow with and without Relaxation[J]. Journal of Fluid Mechanics, 1979, 90(3): 541-560.
[5] Hornung H G, Robinson M L. Transition from Regular to Mach Reflection of Shock Waves[J]. Journal of Fluid Mechanics, 1982, 123: 155-164.
[6] Chpoun A, Passerel D, Li H, et al. Reconsideration of Oblique Shock Wave Reflection in Steady Flows[J]. Journal of Fluid Mechanics, 1995, 301: 19-35.
[7] Ivanov M S, Gimelshein S F, Beylich A E. Hysteresis Effect in Stationary Reflection of Shock Waves[J]. Physics of Fluids, 1995, 7(4): 685-686.
[8] 曲亮. 超然冲压发动机燃烧模态分类技术研究[D]. 哈尔滨:哈尔滨工业大学, 2008.
[9] 于田. 超燃冲压发动机模态转换突变特性研究[D]. 哈尔滨:哈尔滨工业大学, 2009.
[10] Shuchi Ueda, Sadatake Tomioka, Fumiei Ono, et al. Mach 6 Test of a Scramjet Engine with Multi-Staged Fuel Injection[R]. AIAA 2006-1027.
[11] Robert D Rockwell, Christopher P Goyne, Willie Haw, et al. Experimental Study of Test-Medium Vitiation Effects on Dual-Mode Scramjet Performance[J]. Journal of Propulsion and Power, 2011, 22(4): 1135-1142.
[12] Wen Bao, Qingchun Yang, Juntao Chang, et al. Dynamic Characteristics of Combustion Mode Transitions in a Strut-Based Scramjet Combustor Mode[J]. Journal of Propulsion and Power, 2013, 29(5): 1244-1248.
[13] Zhang Yan, Chen bing, Wei Baoxi, et al. Influencing Factors on the Mode Transition in a Dual Mode Ramjet[J]. Acta Stronautica, 2014, 103: 1-15.
[14] 张岩, 朱韶华, 刘刚. 双模态冲压发动机中的模态转换研究综述[J]. 推进技术, 2013, 34(12): 1719-1728. (ZHANG Yan, ZHU Shao-hua, LIU Gang, et al. An Overview on Mode Transition in Dual Mode Ramjet[J]. Journal of Propulsion Technology, 2013, 34(12): 1719-1728.)
[15] Ikui T, Matsuo K, Nagai M. The Mechanism of Pseudo-Shock Waves[J]. Bull of the JSME, 1974, 17(108): 731-739.
[16] Ikui T, Matsuo K, Sasaguchi K. Modified Diffusion Model of Pseudo-Shock Waves Considering Upstream Boundary Layers[J]. Bull of the JSME, 1981, 24(197): 1920-1927.
[17] Kim HD. An Experimental Study of Weak Normal Shock-Wave/Turbulent Boundary Interaction in Internal Flows[D]. Fukuoka: Kyushu University, 1991.
[18] Nussdorfer T J. Some Observations of Shock-Induced Turbulent Separation on Supersonic Diffusers[R]. NACA Research Memorandum E51L26, 1954.
[19] 王成鹏, 张堃元, 程克明. 非对称来流隔离段流动特性研究[J]. 推进技术, 2006, 27(5): 436-440. (WANG Cheng-peng, ZHANG Kun-yuan, CHENG Ke-ming. Investigation of Flow in Isolators under Asymmetric Incoming Airflow[J]. Journal of Propulsion Technology, 2006, 27(5): 436-440.)
[20] Weiss A, Olivier H. Behavior of a Shock Train under the Influence of Boundary-Layer Suction by a Normal Slot[J]. Experiments in Fluids, 2012, 52(2): 273-287.
[21] Dudek J C, Davis D O, Slater J W. Validation and Verification of the WIND Code for Supersonic Diffuser Flow[C]. Reno: 39th Aerospace Sciences Meeting and Exhibit, 2001.
[22] Chapman D R, Kuehn D M, Larson H K. Investigation of Separated Flows in Supersonic and Subsonic Streams with Emphasis on the Effect of Transition[R]. NACA Report 1356, 1958.
[23] Zhukoski E E. Turbulent Boundary-Layer Separation in front of a Forward-Facing Step[J]. AIAA Journal, 1967, 5(10): 1746-1753.
[24] Wang Zhenguo, Zhao Yilong, Zhao Yuxin, et al. Prediction of Massive Separation of Unstarted Inlet via Free Interaction Theory[J]. AIAA Journal, 2015, 53(4): 1108-1111.
[25] 赵一龙. 高超声速进气道分离流动建模及不起动机理研究[D]. 长沙:国防科技大学, 2014. * 收稿日期:2015-10-25;修订日期:2016-02-03。基金项目:国家自然科学基金(91216115;11472279)。作者简介:马生虎,男,硕士生,研究领域为超燃冲压发动机流动。E-mail: mash@pku.edu.cn通讯作者:岳连捷,男,副研究员,研究领域为超燃冲压发动机流动。E-mail: yuelj@imech.ac.cn(编辑:朱立影)
|