[1] Denton J D. Loss Mechanisms in Turbomachines[J]. Journal of Turbomachinery, 1993, 115(4): 621-656.
[2] Bons J P, Sondergaard R, Rivir R B. Turbine Separation Control Using Pulsed Vortex Generator Jets[J]. Journal of Turbomachinery, 2001, 123(2): 198-206.
[3] Bons J P, Pluim J, Gompertz K. Application of Flow Control to an Aft-Loaded Low Pressure Turbine Cascade with Unsteady Wakes[J]. Journal of Turbomachinery, 2012, 134(3): 1-11.
[4] Volino R J, Hultgren L S. Measurements in Separated and Transitional Boundary Layers under Low-Pressure Turbine Airfoil Conditions[J]. Journal of Turbomachinery, 2001, 123(2): 189-197.
[5] R X Meyer. The Effects of Wakes on the Transient Pressure and Velocity Distributions in Turbomachines[J]. Journal of Basic Engineering, 1958, 80: 1544-1552.
[6] Smith L H. Wake Dispersion in Turbomachines[J]. Journal of Basic Engineering, 1966, 88(3): 688-690.
[7] Stieger R D, Hodson H P. The Unsteady Development of a Turbulent Wake through a Downstream Low-Pressure Turbine Blade Passage[R]. ASME GT-2004-53061.
[8] Stieger R D, Hodson H P. Unsteady Dissipation Measurements on a Flat Plate Subject to Wake Passing[C]. Czech: ASI: Proceedings of 5th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, 2003.
[9] Hodson H P. Modelling Unsteady Transition and Its Effects on Profile Loss[J]. Journal of Turbomachinery, 1990, 112(4): 691-701.
[10] Hodson H P. Bladerow Interactions Transition and High-Lift Airfoil in Low-Pressure Turbines[J]. Annual Review Fluid Mechanics, 2005(37), 37: 71-98.
[11] Hodson H P, Howell R J. The Role of Transition in High-Lift Low Pressure Turbines for Aeroengines[J]. Progress in Aerospace Sciences, 2005, 41(6): 419-454.
[12] Simoni D, Ubaldi M, Zunino P. Experimental Investigation of the Interaction Between Incoming Wakes and Instability Mechanisms in a Laminar Separation Bubble[J]. Experimental Thermal and Fluid Science, 2013, 50: 54-60.
[13] Lou W, Hourmouziadis J. Separation Bubbles under Steady and Periodic-Unsteady Main Flow Conditions[J]. Journal of Turbomachinery, 2003, 122(4): 634-643.
[14] 张波, 李伟, 黄恩亮, 等. 超高负荷低压涡轮叶型边界层被动控制[J]. 推进技术, 2012, 33(5): 747-753. (ZHANG Bo, LI Wei, HUANG En-liang, et al. Boundary Layer Passive Control of a Ultra-Hight-Lift Low-Pressure Turbine Blade [J]. Journal of Propulsion Technology, 2012, 33(5): 747-753.)
[15] 李伟, 朱俊强, 李钢, 等. 基于表面热膜的超高负荷低压涡轮叶栅附面层特性[J]. 航空动力学报, 2011, 26(1): 115-121.
[16] 罗华玲, 乔渭阳. 低压涡轮叶型边界层相互作用的数值模拟[J]. 推进技术, 2009, 30(1): 95-100. (LUO Hua-ling, QIAO Wei-yang. Numerical Simulation for Interaction between Wake and Boundary Layer on a Low-Pressure Turbine Profile[J]. Journal of Propulsion Technology, 2009, 30(1): 95-100.)
[17] 乔渭阳, 赵磊, 罗华玲, 等. 低雷诺数涡轮叶片边界层转捩及分离特性测量[J]. 推进技术, 2012, 33(6): 859-865. (QIAO Wei-yang, ZHAO Lei, LUO Hua-ling, et al. Mearsurement of the Transition and Separation for Turbine Blade Boundary Layer with Low-Reynolds Number[J]. Journal of Propulsion Technology, 2012, 33(6): 859-865.)
[18] 邹正平, 周琨, 王鹏, 等. 大涵道比涡扇发动机涡轮内部流动机理及气动设计技术研究进展[J]. 航空制造技术, 2012, 28(12): 2803-2812.
[19] 叶建. 非定常环境中叶片边界层时空演化机制的大涡模拟[D]. 北京:北京航空航天大学, 2003.
[20] 刘志刚, 叶建, 邹正平. 有/无尾迹作用下低压涡轮叶栅分离边界层转捩的大涡模拟[J]. 航空动力学报, 2013, 28(2): 215-218.
[21] 张伟昊. 低压涡轮内若干流动机理及气动设计问题研究[D]. 北京:北京航空航天大学, 2012.
[22] Zhang W H, Zou Z P, Ye J. Effects of Periodic Wakes and Freestream Turbulence on Coherent Structures in Low-Pressure Turbine Boundary Layer[R]. ASME GT2012-69061.
[23] 张伟昊, 刘火星, 李维, 等. 尾迹与涡轮叶栅边界层的相互作用[J]. 航空动力学报, 2009, 24(4): 843-850.
[24] 杨龙君. 涡轮叶片边界层非定常流动实验模拟及测试技术研究[D]. 北京:北京航空航天大学, 2012.
[25] Pfeil H, Eifler J. Turbulenzverhaltnisse Hinter Rotierenden Zylindergittern[J]. Forschung im Ingeneiurswesen, 1976, 42: 27-32.
[26] Horton H P. Laminar Separation in Two and Three-Dimensional Incompressible Flow[D]. London: University of London, 1968.
[27] Jorgensen F E. How to Measure Turbulence with Hot-Wire Anemometers[M]. Skovlunde: Dantec Dynamics, 2002. * 收稿日期:2015-12-03;修订日期:2016-03-03。作者简介:梁赟,男,博士生,研究领域为叶轮机械气动热力学。E-mail: liangyun@buaa.edu.cn(编辑:朱立影)
|