[1] Hourmouziadis J. Aerodynamic Design of Low Pressure Turbines[R]. NATO: AGARD lecture series 167, 1989.
[2] Stefan Brunner, Leonhard Fottner, Heinz-Peter Schiffer. Comparison of Two Highly Loaded Low Pressure Turbine Cascades under the Influence of Wake-Induced Transition[R]. ASME GT-2000-268.
[3] Haselbach F, Schiffer. The Application of Ultra High Lift Blade in the BR715 LP Turbine[J]. ASME Journal of Turbomachinery, 2002, 124(1): 45-51.
[4] Cumpsty N, Dong Y. Compressor Blade Boundary Layers in the Presence of Wakes [R]. ASME 95-GT-443.
[5] Halstead D E, Wisler D C. Boundary Layer Development in Axial Compressor and Turbines. Part 1 of 4-Composite Picture [J]. ASME Journal of Turbomachinery, 1997, 119(2): 114-127.
[6] Halstead D E, Wisler D C. Boundary Layer Development in Axial Compressor and Turbines. Part 3 of 4-LP Turbines[J]. ASME Journal of Turbomachinery, 1997, 119(2): 225-237.
[7] 周莉, 张鑫, 蔡元虎. 轴向间距对涡轮损失影响的非定常数值研究[J]. 航空动力学报, 2010, 25(7).
[8] 葛宁. 轴流压气机转-静二维非定常薄层N-S数值模拟[J]. 推进技术, 2001, 22(1). (GE Ning. N-S Simulation Based on the Two-Dimensional Unsteady Thin Layer of Axial Compressor Rotor and Stator[J]. Journal of Propulsion Technology, 2001, 22(1).)
[9] 孙爽, 雷志军, 卢新根, 等. 来流条件对超高负荷低压涡轮附面层非定常特性影响的实验研究[J]. 推进技术, 2016, 37(4): 653-662. (SUN Shuang, LEI Zhi-jun, LU Xin-gen, et al. An Experimental Study of Effects of Inflow Condition to Boundary Layer of an Ultra-High-Lift LPT at Unsteady State[J]. Journal of Propulsion Technology, 2016, 37(4): 653-662.)
[10] 孙爽, 雷志军, 李伟, 等. 定常来流条件下低压涡轮附面层流动控制手段的实验研究[J]. 推进技术, 2016, 37(5): 768-779. (SUN Shuang, LEI Zhi-jun, LI Wei, et al. An Experimental Study of Boundary Layer Separation Flow Control Strategy to Low Pressure Turbine Blade at Steady Inflow State[J]. Journal of Propulsion Technology, 2016, 37(5): 768-779.)
[11] Volino R J. Separation Control on Low-Pressure Turbine Airfoils Using Synthetic Vortex Generator Jets[R]. ASME 2003-GT-38729.
[12] Huang J, Corke T C, Thomas F O. Plasma Actuators for Separation Control of Low Pressure Turbine Blades[R]. AIAA 2003-1027.
[13] SUN Shuang, LEI Zhijun, LU Xingen, et al. The Combined Effects of Surface Roughness with Upstream Wakes on the Boundary Layer Development of an Ultra-High-Lift LPT Blade[J]. International Journal of Turbo and Jet Engines, 2016, 33(1): 104-113.
[14] SUN Shuang, LEI Zhijun, LU Xingen, et al. An Experimental Study of Separation Control on Ultra-Highly-Loaded Low Pressure Turbine Blade by Surface Roughness[J]. Journal of Thermal Science, 2015, 24(3):229-238.
[15] Pfeil H, Eifler J. Turbulenzverhaltnisse Hinter Rotierenden Zylin-Dergittern[J]. Forschung im Ingenieurwesen, 1976, 42: 27-32.
[16] Xue Feng Zhang. Separation and Transition Control on Ultra-High-Lift Low Pressure Turbine Blades in Unsteady Flow[D]. UK: University of Cambridge, 2005.
[17] Schobeiri M T, Chakka P. Prediction of Turbine Blade Heat Transfer and Aerodynamics Using Unsteady Boundary Layer Transition Model[J]. International Journal of Heat Mass Transfer, 2002, 45: 815-829.
[18] Mahallati A, Sjolander S A. Aerodynamics of a Low-Pressure Turbine Airfoil at Low-Reynolds Numbers Part 2: Blade-Wake Interaction[R]. ASME GT2007-27348.
[19] SUN Shuang, LEI Zhijun, LU Xingen, et al. The Effect of FSTI to the Combined Separation Control Strategy of Surface Roughness with Upstream Wakes[R]. ASME GT2016-58163.
[20] Hodson H P, Robert J Howell. The Role of Transition in High-Lift Low-Pressure Turbines for Aeroengines[J]. Progress in Aerospace Sciences, 2005, 41(6): 419-454.
[21] Opoka M, Hodson H P. Experimental Investigation of Unsteady Transition Processes on High-Lift T106A Turbine Blades[J]. Journal of Propulsion and Power, 2008, 24(3): 424-432.
[22] Pluim J, Curtis Memory, Jeffrey Bons, et al. Designing a High Fidelity Wake Simulator for Research Using Linear Cascades Research Using Linear Cascades[R]. ASME GT2009-59276.
[23] Tomikawa K, Horie H, Iida M, et al. Parametric Surveys of the Effects of Wake Passing on High Lift LP Turbine Flows Using LES[C]. Kenji: 5th Joint ASME/JSME Fluids Engineering Conference, 2007.
[24] FUNAZAKI Kenichi, YAMADA Kazutoyo, CHIBA Yasuhiro, et al. Numerical and Experimental Studies on Separated Boundary Layers over Ultra-High Lift Low-Pressure Turbine Cascade Airfoils with Variable Solidity: Effects of Free-Stream Turbulence[R]. ASME GT2008-50718.
[25] Ooba Y, Kodama H, Arakawa C, et al. Numerical Simulation of a Wake-Blade Interaction Using LES[R]. Sydney: 17th Symposium on Computational Fluid Dynamics, 2002.
[26] Kaszeta R W, Simon T W, Ottaviani F, et al. The Influence of Wake Passing Frequency and Elevated Free Stream Turbulence Intensity on Transition in Low-Pressure Turbines[R]. AIAA 2003-3633.
[27] Kaszeta R W, Simon T W, Ashpis D E. Experimental Investigation of Transition to Turbulence as Affected by Passing Wakes[R]. ASME 2001-GT-0195.
[28] Wu X, Durbin P A. Evidence of Longitudinal Vortices Evolved from Distorted Wakes in a Turbine Passage[J]. Journal of Fluid Mechanics, 2001, 446: 199-228.
[29] Mittal R, Venkatasubramanian S, Najjar P M. Large-Eddy Simulation of Flow through a Low-Pressure Turbine Cascade[R]. AIAA 2001-2560.
[30] Michelassi V, Wissink J, Rodi W. Analysis of DNS and LES of Flow in a Low Pressure Turbine Cascade with Incoming Wakes and Comparison with Experiments[J]. Flow, Turbulence and Combustion, 2002, 69(3): 295-329.
[31] Suzen Y B, Huang P G. Numerical Simulation of Unsteady Wake/Blade Interactions in Low-Pressure Turbine Flows Using an Intermittency Transport Equation [J]. ASME Journal of Turbomachinery, 2004, 127(3):431-444.
[32] Francesca Satta, Marina Ubaldi, Pietro Zunino, et al. An Experimental Investigation of the Wake Shed from a High-Lift Low Pressure Turbine Cascade at Different Reynolds Numbers[R]. ASME GT2008-51157.
[33] Schubauer G B, Klebanoff P S. Contributions on the Mechanics of Boundary Layer Transition[R]. NACA TN 3489, 1955.
[34] Curtis E M, Hodson H P, Banieghbal M R, et al. Development of Blade Profiles for Low-Pressure Turbine Applications[J]. ASME Journal of Turbomachinery, 1997, 119(3): 531-538.
[35] Xue Feng Zhang, Howard Hodson. Effects of Reynolds Number and Freestream Turbulence Intensity on the Unsteady Boundary Layer Development on an Ultra-High-Lift Low Pressure Turbine Airfoil[J]. ASME Journal of Turbomachinery, 2010, 132(1): 1001-1010. * 收稿日期:2016-10-09;修订日期:2016-11-21。基金项目:天津市应用基础与前沿技术研究计划青年项目(14JCQNJC06800);中央高校基本科研业务费专项资金 (ZXH2012P007;3122016A004;3122016u005);中国民航大学实验技术创新基金(2016SYCX01)。作者简介:曲春刚,男,硕士,讲师,研究领域为航空发动机气动热力学。E-mail: pqbird@sina.com通讯作者:孙爽,男,博士,讲师,研究领域为航空发动机气动热力学。E-mail: okkimi@aliyun.com(编辑:梅瑛)
|