[1] Naeem M, Singh R, Probert D. Implications of Engine Deterioration for a High-Pressure Turbine Blade's Low Cycle Fatigue (LCF) Life-Consumption[J]. International Journal of Fatigue, 1999, 21: 831-847.
[2] Naeem M, Singh R, Probert D. Implications of Engine's Deterioration upon an Aero-Engine HP Turbine Blade's Thermal Fatigue Life[J]. International Journal of Fatigue, 2000, 22: 147-160.
[3] Naeem M, Singh R, Probert D. Consequences of Aero-Engine Deteriorations for Miltary Aircraft [J]. Applied Energy, 2001, 70: 103-133.
[4] Naeem M. Implications of Day Temperature for a High-Pressure Turbine Blade's Low Cycle Fatigue Life Consumption[J]. Journal of Propulsion and Power, 2008, 24(3): 624-628.
[5] Naeem M. Implications of Day Temperature Variation for an Aero-Engine's HP Turbine-Blade's Creep Life Consumption[J]. Aerospace Science and Technology, 2009, 13: 27-35.
[6] Naeem M. Implications of Turbine Erosion for an Aero-Engine's High-Pressure-Turbine Blade's Low Cycle Fatigue Life Consumption[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(5): 1-8.
[7] Naeem M, Haq I U. Implications of a Military Turbofan's High-Pressure Turbine Erosion for Blade's Creep Life Consumption[J]. Journal of Propulsion and Power, 2010, 26(1).
[8] Eshati S, Ghafir M F A, Laskaridis P, et al. Impact of Operating Condition and Design Parameters on Gas Turbine Hot Section Creep Life[R]. ASME GT-2010-22334.
[9] Ghafir M F A, Li Y G, Singh R, et al. Impact of Operating and Health Conditions on Aero Gas Turbine Hot Section Creep Life Using a Creep Factor Approach [R].ASME GT-2010-22332.
[10] Eshati S, Abu A, Laskaridis P, et al. Investigation into the Effects of Operating Conditions and Design Parameters on the Creep Life of High Pressure Turbine Blades in a Stationary Gas Turbine Engine[J]. Mechanics and Mechanical Engineering, 2011, 15(3): 237-247.
[11] Eshati S, Laskaridis P, Haslam A, et al. The Influence of Humidity on the Creep Life of a High Pressure Gas Turbine Blade, Part I: Heat Transfer Model[R]. ASME GT-2012-69455.
[12] Eshati S, Laskaridis P, Haslam A, et al. The Influence of Humidity on the Creep Life of a High Pressure Gas Turbine Blade, Part II: Case Study[R]. ASME GT-2012-69462.
[13] Ghafir M F A, Bin M F. Performance Based Creep Life Estimation for Gas Turbines Application [D]. Oxfordshire: Cranfield University, 2011.
[14] Ghafir M F A, Li Y G, Wang L. Creep Life Prediction for Aero Gas Turbine Hot Section Component Using Artificial Neural Networks[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(3): 1-9.
[15] Abu A O. Integrated Approach for Stress Based Lifing of Aero Gas Turbine Blades[D]. Oxfordshire: Cranfield University, 2013.
[16] Abu A O, Samir E, Panagiotis L, et al. Aero-Engine Turbine Blade Life Assessment Using the Neu/Sehitoglu Damage Model[J]. International Journal of Fatigue, 2014, 61: 160-169.
[17] Mishra R K, Beura C. Life Consumption Assessment of a Large Jet Engine[J]. Journal of Failure Analysis and Prevention, 2014, 14: 519-529.
[18] Tinga T. Application of Physical Failure Models to Enable Usage and Load Based Maintenance [J]. Reliability Engineering and System Safety, 2010, 95: 1061-1075.
[19] 陈小磊, 郭迎清, 杜宪. 航空发动机全寿命期自适应寿命延长控制[J]. 推进技术, 2014, 35(1): 107-114. (CHEN Xiao-lei, GUO Ying-qing, DU Xian. Adaptive Life Extending Control of Aircraft Engine in Whole Life[J]. Journal of Propulsion Technology, 2014, 35(1): 107-114.)
[20] 陈小磊, 郭迎清, 闫星辉, 等. 不确定运行环境下航空发动机部件寿命计算[J]. 航空发动机, 2015, 41(3): 30-35.
[21] 刘葆华, 黄金泉. 基于高压涡轮叶片寿命损耗的航空发动机功率控制[J]. 航空动力学报, 2013, 28(12): 2836-2841.
[22] 程礼, 张海威, 王利敏. 密集编队中飞机发动机的疲劳损伤差异[J]. 航空动力学报, 2010, 25(3): 587-591.
[23] 张海威, 何宇廷, 程礼, 等. 双发飞机发动机疲劳损伤差异分析[J]. 空军工程大学学报(自然科学版), 2011, 12(1): 6-9.
[24] 王永旗, 徐可君, 夏毅锐. 基于飞行参数的双发飞机发动机疲劳损伤差异分析[J]. 推进技术, 2014, 35(1): 101-106. (WANG Yong-qi, XU Ke-jun, XIA Yi-rui. Fatigue Damage Analysis of Aeroengine in Twin-Engine Aircraft Based on Flight Parameters[J]. Journal of Propulsion Technology, 2014, 35(1): 101-106.)
[25] 李娜, 杨晓光, 石多奇, 等. 服役工作条件对涡轮转子叶片蠕变寿命的影响[J]. 航空动力学报, 2015, 30(12): 2870-2875.
[26] 《中国航空材料手册》编辑委员会. 中国航空材料手册(第2卷:变形高温合金、铸造高温合金)[M]. 北京:中国标准出版社, 2002. * 收稿日期:2016-01-31;修订日期:2016-03-30。基金项目:国家自然科学基金(51505492);“泰山学者”工程专项经费资助;海军航空工程学院研究生创新基金。作者简介:李本威,男,教授、博导,博士,研究领域为航空发动机状态监控与健康管理。E-mail: LBW103@sina.com(编辑:朱立影)
|