[1] Rajiv A N, Daniel P D, Dilip M S. Critical Plane Fatigue Modeling and Characterization of Single Crystal Nickel Superalloys [J]. Journal of Engineering for Turbines and Power, 2004, 126(2): 391-400.
[2] Arakere N K, Swanson G. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys[J]. Journal of Engineering for Turbines and Power, 2002, 124(1): 161-176.
[3] 孙万超. 镍基单晶合金力学性能及低周疲劳分析与应用[D]. 西安:西北工业大学, 2013.
[4] 丁智平. 复杂应力状态下镍基单晶高温合金低周疲劳损伤研究[D]. 长沙:中南大学, 2005.
[5] Arakere N K. High-Temperature Fatigue Properties of Single Crystal Superalloys in Air and Hydrogen[J]. ASME Journal of Engineering for Gas Turbines and Power, 2004, 126(3): 590-603.
[6] Wahi R P, Auerswald J, Mukherji D, et al. Damage Mechanisms of Single and Polycrystalline Nickel Base Superalloys SC16 and IN738LC under High Temperature LCF Loading[J]. International Journal of Fatigue, 1997, 19(1): S89-S94.
[7] 卿华. 镍基单晶合金力学特性及其在冷却涡轮叶片上的应用分析[D]. 南京:南京航空航天大学, 2007.
[8] Taylor G I, Elam C F. The Plastic Extension and Fracture of Aluminum Crystals[J]. Proceedings of the Royal Society, 1925, 108(745): 25-51.
[9] Schmid E. Plasticity of Crystal[M]. New York: Oxford University Press, 1935.
[10] Myoung G L, Wagoner R H, Kim S J. Comparative Study of Single Crystal Constitutive Equations for Crystal Plasticity Finite Element Analysis[J]. International Journal of Modern Physics, 2008, 22(31): 5388-5393.
[11] Czech N, Stamm W. Thermal Cycle Fatigue Properties of Coated and Uncoated Single Crystal Superalloy[J]. Surface and Coatings Technology, 1996, 86(1-3): 15-21.
[12] 孙万超, 陆山. 用于单晶叶片应力分析的滑移本构模型[J]. 推进技术, 2012, 33(5): 754-759. (SUN Wan-chao, LU Shan. Analysis on the Crystallographic Slip Constitutive Models for Single Crystal Turbine Blade[J]. Journal of Propulsion Technology, 2012, 33(5): 754-759.)
[13] 杨剑秋. 轮盘应力寿命可靠性分析方法研究及应用[D]. 西安:西北工业大学, 2006.
[14] 牟圆伟. 轮盘持久及疲劳裂纹萌生寿命仿真方法与应用[D]. 西安:西北工业大学, 2012.
[15] Antelo M A, Johnson P K, Ostolaza K M, et al. Analysis of the Fracture Behaviour of an Aluminide Coating on a Single Crystal Superalloy under Tensile Conditions[J].Materials Science and Engineering, 1998, 247(1): 40-50.
[16] Li S X, Smith D J. High Temperature Fatigue-Creep Behavior of Single Crystal SRR90 Base Superalloys Part 1-Cyclic Mechanical Response[J]. Fatigue and Fracture of Engineering Materials and Structures, 1995, 18(5): 631-643.
[17] Tian Sugui, Wang Minggang, Li Tang. Influence of TCP Phase and Its Morphology on Creep Properties of Single Crystal Nickel-Based Superalloys[J]. Materials Science and Engineering, 2010, 527(21-22): 5444-5451.
[18] Ryan J M, Reji J, Porter W J. Fatigue Variability of a Single Crystal Superalloy at Elevated Temperature[J]. International Journal of Fatigue, 2009, 31(11-12): 1758-1763.
[19] Liu F, Wang Z G, Ai S H, et al. Thermo-Mechanical Fatigue of Single Crystal Nickel-Based Superalloy DD8[J]. Scripta Materialia, 2003, 48(9): 1265-1270.
[20] Buque C. Dislocation Structures and Cyclic Behaviour of [011] and [111] Oriented Nickel Single Crystals[J].International Journal of Fatigue, 2001, 23(8): 671-678.
[21] Luká? P, Kunz L, Svoboda M. High Cycle Fatigue of Superalloy Single Crystals at High Mean Stress[J]. Materials Science and Engineering, 2004, 387-389(6): 505-510.
[22] SHI Zhen-xue, LI Jia-rong, LIU Shi-zhong, et al. Effects of Dendritic Orientation on Stress Rupture Properties of DD6 Single Crystal Superalloy[J]. Journal of Iron and Steel Research, 2011, 18(10): 66-71.
[23] Hong H U, Choi B G, Kim I S, et al. Deformation Behavior During Thermo-Mechanical Fatigue of a Nickel-Based Single Crystal Superalloy[J]. Procedia Engineering, 2011, 10(1): 281-286.
[24] Zhou H, Harada H, Ro Y, et al. Investigations on the Thermo-Mechanical Fatigue of Two Ni-Based Single-Crystal Superalloys[J]. Materials Science and Engineering, 2005, 394(1-2): 161-167.
[25] Zhang J X, Harada H, Ro Y, et al. Thermomechanical Fatigue Mechanism in a Modern Single Crystal Nickel Base Superalloy TMS-82[J]. Acta Materialia, 2008, 56(13): 2975-2987.
[26] Xu J, Reuter S, Rothkegel W. Tensile and Bending Thermo-Mechanical Fatigue Testing on Cylindrical and Flat Specimens of CMSX-4 for Design of Turbine Blades[J]. International Journal of Fatigue, 2008, 30(2): 363-371.
[27] Moverare J J, Johansson S. Damage Mechanisms of a High-Cr Single Crystal Superalloy During Thermomechanical Fatigue[J]. Materials Science and Engineering, 2010, 527(3): 553-558
[28] 孙万超, 陆山. 考虑应力集中的镍基单晶合金低周疲劳公式[J]. 应用力学学报, 2013, 30(2): 273-277.
[29] 《航空发动机设计用材料数据手册》编委会. 航空发动机设计用材料数据手册第四册[M]. 北京: 航空工业出版社, 2010.
[30] 魏大盛, 王延荣. 粉末冶金涡轮盘裂纹扩展寿命分析[J].推进技术, 2008, 29(6): 753-758. (WEI Da-sheng, WANG Yan-rong. Lifing Methodology of Crack Propagation in Powder Metallurgy Turbine Disk[J]. Journal of Propulsion Technology, 2008, 29(6): 753-758.) * 收稿日期:2016-07-14;修订日期:2016-10-11。作者简介:孙万超,男,博士,工程师,研究领域为航空发动机零部件强度。E-mail: sunwanchaO2010@163.com(编辑:梅瑛)
|