[1] Skira C A, Agnello M. Control System for the Next Century’s Fighter Engines[J]. Journal of Engineering for Gas Turbines and Power, 1992, 114(4): 749-754.
[2] Garg S. NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems[R]. NASA/TM-2005-214036.
[3] Litt J S, Simon D L, Garg S, et al. A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems[R]. NASA/TM-2005-213622.
[4] Lietzau K, Kreiner A. Model Based Control Concepts for Jet Engines[C]. Louisiana: Proceedings of ASME Turbo Expo, 2001.
[5] Troha W, Kerner K, Butler G. Development Status of the U.S.Army Small Heavy Fuel Engine (SHFE) VAATE Program [C]. USA: AHS International 63rd Annual Forum Proceedings-American Helicopter Society, 2007.
[6] 方昌德. 航空发动机的发展前景[J]. 航空发动机, 2004, 30(1): 1-5.
[7] Garg S. Introduction to Advanced Engine Control Concepts[C]. Oklahoma City: Fundamentals of Aircraft Engine Control Design Course, 2007.
[8] Garg S. Aircraft Turbine Engine Control Research at NASA Glenn Research Center[R]. NASA/TM 2013-217821.
[9] Brotherton T, Volponi A, Luppold R, et al. eSTORM: Enhanced Self-Tuning on-Board Real-Time Engine Model[C]. Montana: Proceedings of IEEE Aerospace Conference, 2003.
[10] Vloponi A. Enhanced Self-Tuning on-Board Real-Time Model (eSTORM) for Aircraft Engine Performance Health Tracking [R]. NASA/CR 2008-215272.
[11] Simon D L. An Integrated Architecture for Onboard Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics[R]. NASA TM 2010-216358.
[12] Armstrong J B, Simon D L. Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture[R]. AIAA 2011-5859.
[13] Simon D L, Rinehart A W. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data[R]. ASME GT2014-27172.
[14] Rinehart A W, Simon D L. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results [R]. AIAA 2014-3924.
[15] May R D, Csank J, Lavelle T M, et al. A High-Fidelity Simulation of a Generic Commercial Aircraft Engine and Controller [R]. AIAA 2010-6630.
[16] Hunter G W, Lekki J D, Simon D L. Development and Testing of Propulsion Health Management [C]. Bangalore India: Workshop on Integrated Vehicle Health Management and Aviation Safety, 2012.
[17] 鲁峰, 黄金泉, 吕怡秋, 等. 基于非线性自适应滤波的发动机气路部件健康诊断方法[J]. 航空学报, 2013, 34(11): 2529-2538.
[18] 王海泉, 欧阳玲, 黄杰. 涡扇发动机机载自适应模型及其性能蜕化估计[J]. 计算机仿真, 2012, 29(10): 76-80.
[19] WANG Jian-kang, ZHANG Hai-bo, SUN Jian-guo, et al. Application of Hybrid Aero-Engine Model for Integrated Flight/Propulsion Optimal Control[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2012, 29(1): 16-24.
[20] 任新宇, 杨育武, 樊思齐. 推进系统综合性能寻优控制研究[J]. 推进技术, 2010, 31(1): 61-64. (REN Xin-yu, YANG Yu-wu, FAN Si-qi. Study on Propulsion System Overall Performance Seeking Control Algorithm[J]. Journal of Propulsion Technology, 2010, 31(1): 61-64.)
[21] Hinton G E, Osindero S, The Y. A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation, 2006, 18(7).
[22] 李永进, 张海波, 张天宏. 一种考虑非线性余项的机载发动机自适应模型建立及其在寻优控制中的应用[J]. 推进技术, 2016, 37(1): 172-180. (LI Yong-jin, ZHANG Hai-bo, ZHANG Tian-hong. Establishment and Application in Performance Seeking Control of an On-Board Adaptive Aero-Engine Model Considering Nonlinear Remainders[J]. Journal of Propulsion Technology, 2016, 37(1): 172-180.)
[23] Bengio Y, Lamblin P, Popovici D, et al. Greedy Layer-Wise Training of Deep Networks[C]. Whistler: Proceedings of the 20th Annual Conference on Neural Information Processing System, 2006: 153-160.
[24] Hinton G E, Neal R M. The "Wake-Sleep" Algorithm for Unsupervised Neural Networks[J]. Science, 1995, 268(5214): 1158-1161. * 收稿日期:2016-01-25;修订日期:2016-03-08。基金项目:国家自然科学基金(51576096);江苏省“青蓝工程”、“333”人才工程。作者简介:李永进,男,博士生,研究领域为航空发动机控制。E-mail: bluedragonz@126.com(编辑:梅瑛)
|