[1] Unmeel M, Jeffrey B, John M. Water Injection Pre-Compressor Cooling Assist Space Access[R]. AIAA 2012-5922.
[2] Mesnard J. Overview of the British Aerospace Hotol Tranatmospheric Vehicle[R]. NASA-TM-88008, 1986.
[3] Koelle D. Sanger Advanced Space Transportation System-Progress Report 1990[R]. AIAA 90-5200.
[4] Trout A. M. Theoretical Turbojet Thrust Augmentation by Evaporation of Water During Compression as Determined by Use of Mollier Diagrams[R]. NACA-TN-2104, 1950.
[5] Wilcox E C, Trout A M. Analysis of Thrust Augmentation of Turbojet Engines by Water Injection at Compressor Inlet Including Charts for Calculating Compression Processes with Water Injection[R]. NACA-TR-1006, 1951.
[6] Willens D. Liquid Injection on Turbojet Engines for High Speed Aircraft[R]. Propulsion Research Report R-139, 1955.
[7] Sohn R L. Theoretical and Experimental Studies of Pre-Compressor Evaporative Cooling for Application to the Turbojet Engine in High Altitude Supersonic Flight[R]. WADC-TR-56-477, 1956.
[8] King P G, Nygaard R C. Mechanical Operating Experience with Three J-57-P-11 Turbojet Engines During a Pre-Compressor Spray Cooling Test in an Altitude Test Chamber[R]. AEDC-TN-57-70, 1958.
[9] Neely, James, Ward T R. Maximum Power Performance of a J57 and a YJ75 Turbojet Engine with Pre-Compressor Water Evaporative Cooling[R]. AEDC-TR-58-18, 1959.
[10] Jones W L, Sivo J N, Wanhainen J P. The Effect of Compressor-Inlet Water Injection on Engine and Afterburner Performance[R]. NACA-RM-E58D03B, 1958.
[11] King L D. Design and Testing of a Pre-Compressor Cooling System for a High Speed Aircraft[R]. Chase Vought Corporation, Vought Aeronautics Division, 1961.
[12] Henneberry H M, Snyder C A. Analysis of Gas Turbine Engines Using Water and Oxygen Injection to Achieve High Mach Numbers and High Thrust[R]. NASA TM-106270, 1993.
[13] Balepin V, Engers R, Spath T, et al. MIPCC Technology Development[R]. IASBE-2005-1297.
[14] Balepin V. High Speed Propulsion Cycles[R]. Educational Notes RTO-EN-AVT-150, 2007.
[15] Miller J. Peace Jack an Enigma Exposed[J]. Air International, 1985, (7): 18-23.
[16] Carter P O, Brown T Rice. DARPA’s Rapid Access Small Cargo Affordable Launch (RASCAL) Program[R]. AIAA 2003-8004.
[17] Young D, Olds J. Responsive Access Small Cargo Affordable Launch (RASCAL) Independent Performance Evaluation[R]. AIAA 2005-3241.
[18] Pei-Kuan Wu, Kevin A K, Raymond P F. Breakup Processes of Liquid Jets in Subsonic Crossflows[R]. AIAA 96-3024.
[19] Yang M L, Gu S J, Li X Y. Study on Two-Phase Fuel Distributions in High-Speed Hot Transverse Air Stream[J]. Journal of Engineering for Gas Turbines and Power, 1986, 108(3): 485-490.
[20] 杨茂林, 顾善建, 刘高恩, 等. 跨流喷射燃油浓度分布计算的轨道扩散法[J]. 工程热物理学报, 1983, 4(2).
[21] 张海滨, 刘利, 孙慧娟, 等. 横流中单喷嘴雾化形态与两相掺混特性研究[J]. 西安交通大学学报, 2010, 44(7): 104-108.
[22] Bai B F, Zhang H B, Liu L, et al. Experimental Study on Turbulent Mixing of Spray Droplets in Cross Flows [J]. Experimental Thermal and Fluid Science, 2009, 33(6): 1012-1020.
[23] 岳连捷, 俞刚. 超声速气流中横向煤油射流的数值模拟[J]. 推进技术, 2004, 25(1): 11-14. (YUE Lian-jie, YU Gang. Numerical Simulation of Kerosene Spray in Supersonic Cross Flow[J]. Journal of Propulsion Technology, 2004, 25(1): 11-14.)
[24] 杨顺华, 乐嘉陵. 超声速气流中液体燃料雾化数值模拟[J]. 推进技术, 2008, 29(5):19-22. (YANG Shun-hua, LE Jia-ling. Numerical Simulation of Liquid Fuel Atomization in Supersonic Crossflow[J]. Journal of Propulsion Technology, 2008, 29(5): 19-22.)
[25] 徐胜利, 岳朋涛, 孙英英, 等. 超声速气流中雾化燃料喷射的三维数值研究[J]. 应用力学学报, 2000, 17(2): 19-23.
[26] 瓦格纳 W, 克鲁泽 A. 水和蒸汽的性能[M]. 项红卫,译. 北京:科学出版社, 2003.
[27] 杨世铭, 陶文铨. 传热学(第四版)[M]. 北京:高等教育出版社, 2006. * 收稿日期:2015-11-16;修订日期:2016-04-29。作者简介:涂洪妍,女,硕士,工程师,研究领域为冲压发动机燃烧室性能设计。E-mail:amietu@126.com(编辑:史亚红)
|