[1] Leong M Y, Samuelsen G S, Holdeman J D. Mixing of Jet Air with a Fuel-Rich, Reacting Crossflow[J]. Journal of Propulsion and Power, 1999, 15(5): 617-622.
[2] Leong M Y, Samuelsen G S, Holdeman J D. Optimization of Jet Mixing into a Rich, Reacting Crossflow[J]. Journal of Propulsion and Power, 2000, 16(5): 729–735.
[3] Hatch M S, Sowa W A, Samuelsen G S, et al. Influence of Geometry and Flow Variation on the NO Formation in the Quick Mixer of a Staged Combustor[J]. Journal of Engineering for Gas Turbines and Power, 1992.
[4] Meisl J, Koch R, Kneer R, et al. Study of NOx Emission Characteristics in Pressurized Staged Combustor Concepts[C]. USA: Twenty-Fifth Symposium (International) on Combustion, 1994, 25: 1043-1049.
[5] Fenimore C P. Reactions of Fuel-Nitrogen in Rich Flame Gases[J]. Combustion and Flame, 1976, 26: 249-256.
[6] Vardakas M A, Leong M Y, Brouwer J, et al. The Effect of Air Preheat at Atmospheric Pressure on the Formation of NOx in the Quick-Mix Sections of an Axially Staged Combustor[R]. NASA TM-1999-209431.
[7] Holdeman J D, Vardakas M A, Chang C T. Mixing of Multiple Jets with a Confined Subsonic Crossflow, Part III: the Effects of Air Preheat and Number of Orifices on Flow and Emissions in an RQL Mixing Section[J]. Journal of Fluids Engineering, 2008, 129(11): 1460-1467.
[8] Rizk N K, Mongia H C. Low NOx Rich-Lean Combustion Concept Application[R]. AIAA 91-1962.
[9] Rizk N K, Mongia H C. Three-Dimensional NOx Modeling for Rich/Lean Combustor[R]. AIAA 93-0251.
[10] Rizk N K, Mongia H C. Three-Dimensional NOx Modeling for Diffusion Flame, Rich/Lean and Lean Gas Turbine Combustor[R]. AIAA 93-2338.
[11] Oechsle V L, Mongia H C. Comparison of Mixing Calculations for Reacting and Non-Reacting Flows in a Cylindrical Duct[R]. AIAA 94-0865.
[12] Smlth C E, Talpalllkar M V. A CFD Study of Jet Mixing in Reduced Flow Areas for Lower Combustor Emissions[R]. AIAA 91-2460.
[13] Robert E Malecki. Application of an Advanced CFD-Based Analysis System to the PW6000 Combustor to Optimize Exit Temperature Distribution, Part I: Description and Validation of the Analysis Tool[R]. ASME 2001-GT-0062.
[14] Timothy S Snyder. Application of an Advanced CFD-Based Analysis System to the PW6000 Combustor to Optimize Exit Temperature Distribution, Part II: Comparison of Predications to Full Annular Rig Test Data[R]. ASME 2001-GT-0064.
[15] Morial H. Research and Development of a Combustor for an Environmentally Compatible Small Aero Engine[R]. USA: Mitsubishi Heavy Industries, Ltd Technical Review, 2008, 45(4).
[16] 樊未军, 严明, 易琪, 等. 富油/快速焠熄/贫油驻涡燃烧室低NOx排放[J]. 推进技术, 2006, 27(1): 88-91. (FAN Wei-jun, YAN Ming, YI Qi, et al. Low NOx Emission of Rich-Burn, Quick-Mix, Lean-Burn Trapped Vortex Combustor[J]. Journal of Propulsion Technology, 2006, 27(1): 88-91.)
[17] 蒋波, 何小民, 金义, 等. 采用钝体式孔板焠熄的富油-焠熄-贫油驻涡燃烧室排放性能试验研究[J]. 推进技术, 2016, 37(4): 675-683. (JIANG Bo, HE Xiao-min, JIN Yi, et al. Emission Characteristics of a Rich-Quench-Lean Trapped-Vortex Combustor Utilizing Quenching Device of Orifice Plate Combined with Bluff-Body[J]. Journal of Propulsion Technology, 2016, 37(4): 675-683.) * 收稿日期:2016-02-25;修订日期:2016-04-11。基金项目:上海浦江计划(13PJ1432700)。作者简介:吉雍彬,男,博士生,研究领域为火焰筒强化传热。E-mail: yongbinji@sjtu.edu.cn(编辑:史亚红)
|