[1] Kothari A P, Tarpley C, McLaughlin T A, et al. Hypersonic Vehicle Design Using Inward Turning Flow Fields [R]. AIAA 1996-2552.
[2] You Y. An Overview of the Advantages and Concerns of Hypersonic Inward Turning Inlets[R]. AIAA 2011-2269.
[3] Walker S H, Rodgers F. Falcon Hypersonic Technology Overview[R]. AIAA 2005-3253.
[4] Walker S H, Rodgers F, Esposita A L. Hypersonic Collaborative Australia/United States Experiment (HYCAUSE) [R]. AIAA 2005-3254.
[5] Holden M S, Smolinski G J, Mundy E, et al. Experimental Studies for Hypersonic Vehicle Design and Code Validation of the Unsteady Flow Characteristics Associated with “Free Flight” Shroud and Stage Separation, and Mode Switching [R]. AIAA 2008-642.
[6] Stephen E J, Hoenisch S R, Waddel M L, et al. HIFiRE 6 Unstart Conditions at Off-Design Mach Numbers [R]. AIAA 2015-0109.
[7] Steelant J, Langener T, Hannemann K, et al. Conceptual Design of the High-Speed Propelled Experimental Flight Test Vehicle HEXAFLY [R]. AIAA 2015-3539.
[8] Hannemann K, Schramm J M, Karl S, et al. Free Flight Testing of a Scramjet Engine in a Large Scale Shock Tunnel [R]. AIAA 2015-3608.
[9] M?lder S, Szpiro E J. Busemann Inlet for Hypersonic Speeds [J]. Journal of Spacecraft and Rockets, 1966, 3(8): 1303-1304.
[10] Billig F S, Kothari A P. Streamline Tracing: Technique for Designing Hypersonic Vehicles[J]. Journal of Propulsion and Power, 2000, 16(3): 465-471.
[11] Smart M K. Design of Three-Dimensional Hypersonic Inlets with Rectangular-to-Elliptical Shape Transition [J]. Journal of Propulsion and Power, 1999, 15(3): 408-416.
[12] Sabean J W, Lewis M J. Computational Optimization of a Hypersonic Rectangular-to-Circular Inlet[J]. Journal of Propulsion and Power, 2001, 17(3): 571-578.
[13] Smart M K, Trexler C A. Mach 4 Performance of Hypersonic Inlet with Rectangular-to-Elliptical Shape Transition[J]. Journal of Propulsion and Power, 2004, 20(2): 288-293.
[14] Doherty L J, Smart M K, Mee D J. Experimental Testing of an Airframe-Integrated Three-Dimensional Scramjet at Mach 10[J]. AIAA Journal, 2015, 53(11): 3196-3207.
[15] 孙波, 张堃元, 金志光, 等. 流线追踪Busemann进气道设计参数的选择[J]. 推进技术, 2007, 28(1): 55-59. (SUN Bo, ZHANG Kun-yuan, JIN Zhi-guang, et al. Selection of Design Parameters for Stream Traced Hypersonic Busemann Inlets[J]. Journal of Propulsion Technology, 2007, 28(1): 55-59.)
[16] 南向军, 张堃元, 金志光, 等. 压升规律可控的高超声速内收缩进气道设计[J]. 航空动力学报, 2011, 26(3): 518-523.
[17] 李永洲, 张堃元, 南向军. 基于马赫数分布规律可控概念的高超声速内收缩进气道设计[J]. 航空动力学报, 2012, 27(11): 2484-2491.
[18] 李永洲, 张堃元, 朱伟, 等. 双弯曲入射激波的可控中心体内收缩基准流场设计[J]. 航空动力学报, 2015, 30(3): 563-570.
[19] 尤延铖, 梁德旺, 黄国平. 一种新型内乘波式进气道初步研究[J]. 推进技术, 2006, 27(3): 252-256. (YOU Yan-cheng, LIANG De-wang, HUANG Guo-ping. Investigation of Internal Waverider-Derived Hypersonic Inlet[J]. Journal of Propulsion Technology, 2006, 27(3): 252-256.)
[20] 朱呈祥, 黄国平, 尤延铖, 等. 内乘波式进气道与典型侧压式进气道的性能对比[J]. 推进技术, 2011, 32(2): 151-158. (ZHU Cheng-xiang, HUANG Guo-ping, YOU Yan-cheng, et al. Performance Comparison between Internal Waverider Inlet and Typical Sidewall Compression Inlet[J]. Journal of Propulsion Technology, 2011, 32(2): 151-158.)
[21] 卫锋, 贺旭照, 贺元元, 等. 三维内转式进气道对双旁进气飞行器力矩特性的影响分析[J]. 推进技术, 2014, 35(11): 1441-1447. (WEI Feng, HE Xu-zhao, HE Yuan-yuan, et al. Effects Analysis of 3D Inward Turning Inlet on Moment Characteristics of Vehicle with Inlets Decorated in Both Sides [J]. Journal of Propulsion Technology, 2014, 35(11): 1441-1447.)
[22] 卫锋, 贺旭照, 贺元元, 等. 三维内转式进气道双激波基准流场的设计方法[J]. 推进技术, 2015, 36(3): 358-364. (WEI Feng, HE Xu-zhao, HE Yuan-yuan, et al. Design Method of Dual-Shock Wave Basic Flow-Field for Inward Turning Inlet [J]. Journal of Propulsion Technology, 2015, 36(3): 358-364.)
[23] 刘雄, 王翼, 梁剑寒. 方转圆对三维侧压进气道的流动特性影响[J]. 航空学报, 2014, 35(11): 2939-2948.
[24] 肖雅彬, 岳连捷, 张新宇. 利用NURBS中心锥消除马赫盘的内转式进气道设计方法 [C]. 三亚:第四届高超声速科技学术会议, 2011.
[25] 徐锦, 罗金玲, 戴梧叶, 等. 三维内收缩前体/进气道设计参数影响规律研究[J]. 空气动力学学报, 2014, (05): 646-653.
[26] 王德鹏, 田方超, 张启帆, 等. 进口形状对内转式进气道的起动特性影响[J]. 航空动力学报, 2015, 30(6): 1400-1406.
[27] 杨大伟, 余安远, 韩亦宇, 等. 泄流对高超声速内转式进气道自起动性能影响研究[C]. 哈尔滨:第八届全国高超声速科技学术会议, 2015.
[28] Jacobsen L S, Tam C, Behdadnia R, et al. Starting and Operation of a Streamline-Traced Busemann Inlet at Mach 4 [R]. AIAA 2006-4508.
[29] Flock A K, Gülhan A. Experimental Investigation of the Starting Behavior of a Three-Dimensional Scramjet Intake [J]. AIAA Journal, 2015, 53(9): 2686-2693.
[30] 范洁川. 近代流动显示技术[M]. 北京:国防工业出版社, 2002.
[31] Shapiro A H. Design of Tufts for Flow Visualization[J]. AIAA Journal, 1963, 1(1): 213-214.
[32] Crowder J P. Flow Visualization in Flight Testing[R]. AlAA 1990-1273.
[33] 李福忠, 王晓东. 流动显示学在风机领域中的最新进展(之一)论丝线的动态响应及方向分布定量计算[J]. 风机技术, 1995, 05: 6-11.
[34] Zaidi H, Taiar R, Fohanno S, et al. Surface Flow Visualization around Competitive Swimmers by Tufts Method[J]. Journal of Visualization, 2008, 11(3): 187-188.
[35] Wieser D, Bonitz S, Nayeri C N, et al. Quantitative Tuft Flow Visualization on the Volvo S60 Under Realistic Driving Conditions [R]. AIAA 2016-1778.
[36] Crowder J P. Add Fluorescent Minitufts to the Aerodynamicist's Bag of Tricks [J]. Astronautics and Aeronautics, 1980, 18: 54-56.
[37] 吴根兴, 汪子兴. 观察物体表面附近流谱的新方法——萤光微丝法[J]. 南京航空航天大学学报, 1980, 04: 102-110.
[38] 惠增宏, 侯金玉, 邓磊. 荧光微丝在低速风洞试验中应用的关键技术研究[J]. 实验流体力学, 2015, 29(1): 92-96.
[39] Stephen C, Jewel B. Investigation of Critical States of the F/A-18E in Power Approach Configuration Using Mini-Tuft Flow Visualization [R]. AIAA 2001-4145.
[40] Pittman J L. Experimental Flowfield Visualization of a High Alpha Wing at Mach 1.62[J]. Journal of Aircraft, 1987, 24(5): 335-341.
[41] Album H H. Hypersonic Flow Visualization Using Tufts of Pure Carbon Yarn [J]. AIAA Journal, 1965, 3(8): 1520.
[42] Kammeyer M E, Lafferty J F, Spring W C. (1989). Microtuft Flow Visualization at Mach 10 and 14 in the NSWC Hypervelocity Wind Tunnel No.9 [R]. AIAA 1989-41
[43] 黄舶, 李祝飞, 杨基明, 等. 激波风洞内超燃冲压发动机三面压缩进气道流场实验观测[J]. 实验力学, 2012, 27(1): 23-29.
[44] 黄舶. 高超声速内外流动激波/边界层相互作用的实验与数值研究[D]. 合肥:中国科学技术大学, 2013.
[45] 余安远, 杨大伟, 卫锋, 等. 典型高超声速内转式进气道性能研究[C]. 哈尔滨:第八届全国高超声速科技学术会议, 2015.
[46] Zhufei Li, Wenzhi Gao, Hongliang Jiang, et al. Unsteady Behaviors of a Hypersonic Inlet Caused by Throttling in Shock Tunnel[J]. AIAA Journal, 2013, 51(10): 2485-2492.
[47] 李祝飞, 高文智, 李鹏, 等. 二元高超声速进气道激波振荡特性实验 [J]. 推进技术, 2012, 33(5): 676-682. (LI Zhu-fei, GAO Wen-zhi, LI Peng, et al. Experimental Investigation on the Shock Wave Oscillation Behaviors in a Two-Dimensional Hypersonic Inlet Flow[J]. Journal of Propulsion Technology, 2012, 33(5): 676-682.)
[48] Li Z, Huang B, Yang J. A Novel Test of Starting Characteristics of Hypersonic Inlets in Shock Tunnel[R]. AIAA 2011-2308.
[49] 李祝飞, 杨基明. 预设堵块法检测进气道自起动能力的数值研究[J]. 推进技术, 2016, 37(10). (LI Zhu-fei, YANG Ji-ming. A Numerical Investigation of the Pre-Setting-Blockage Method to Detect the Self-Starting Ability of an Inlet[J]. Journal of Propulsion Technology, 2016, 37(10).)
[50] 陈强. 激波管流动的理论和实验技术[M]. 合肥:中国科学技术大学五系讲义, 1979.
[51] 李祝飞. 高超声速进气道起动特性机理研究[D]. 合肥:中国科学技术大学, 2013.
[52] 李祝飞, 高文智, 李鹏, 等. 一种进气道自起动特性检测方法[J]. 实验流体力学, 2013, 27(2): 14-18.
[53] 刘启国, 侯秀良, 张新龙. 竹炭涤纶纤维的热学性能浅析[J]. 毛纺科技, 2009, 37(9): 44-46. 收稿日期:2016-03-21;修订日期:2016-05-05。基金项目:国家自然科学基金(11402263;11132010);中国博士后科学基金(2014M551818)。作者简介:李祝飞,男,博士后,研究领域为高超声速进气道。 E-mail: lizhufei@mail.ustc.edu.cn(编辑:朱立影)
|