[1] Lefebvre A H, Ballal D R. Gas Turbine Combustion[M]. USA: CRC Press, 2010.
[2] Bongers H. Analysis of Flamelet-Based Methods to Reduce Chemical Kinetics in Flame Computations[D]. Eindhoven: Technische Universiteit Eindhoven, 2005.
[3] Van Oijen J A, De Goey L P H. Predicting NO Formation with Flamelet Generated Manifold[C]. Stockholm: Proceedings of the European Combustion Meeting, 2009.
[4] Mass U, Pope S B. Laminar Flame Calculations Using Simplified Chemical Kinetics Based on Intrinsic Low-Dimensional Manifolds[J]. Proceedings of the Combustion Institute, 1994, 25(1): 1349-1356.
[5] Mass U, Pope S B. Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space[J]. Combustion and Flame, 1992, 88(3-4):239-264.
[6] Pierce C D. Progress-Variable Approach for Large-Eddy Simulation of Turbulent Combustion[D]. California: Stanford University, 2001.
[7] Ravikanti M. Advanced Flamelet Modeling of Turbulent Nonpremixed and Partially Premixed Combustion[D]. Loughborough: Loughborough University, 2008.
[8] Ihme M, Pitsch H. Prediction of Extinction and Reignition in Nonpremixed Turbulent Flames using a Flamelet/Progress Variable Model 1. A Priori Study and Presumed PDF Closure[J]. Combustion and Flame, 2008, 155(1-2): 70-89.
[9] Ihme M, Pitsch H. Prediction of Extinction and Reignition in Nonpremixed Turbulent Flames using a Flamelet/Progress Variable Model 2. Application in LES of Sandia Flames D and E[J]. Combustion and Flame, 2008, 155(1-2): 90-107.
[10] El-Asrag H A, Iannetti A C, Apte S V. Large Eddy Simulation for Radiation-Spray Coupling for a Lean Direct Injector Combustor[J]. Combustion and Flame, 2014, 161(2): 510-524.
[11] 朱文中, 杨渐志, 陈靖, 等. 湍流扩散火焰局部熄火现象的大涡模拟研究[J]. 推进技术, 2015, 36(6): 808-815. (ZHU Wen-zhong, YANG Jian-zhi, CHEN Jing, et al. Large Eddy Simulation of Local Extinction of Turbulent Non-Premixed Flame[J]. Journal of Propulsion Technology, 2015, 36(6): 808-815.)
[12] 赵国焱, 孙明波, 吴锦水. 基于不同PDF的超声速扩散燃烧火焰面模型对比[J]. 推进技术, 2015, 36(2): 232-237. (ZHAO Guo-yan, Sun Ming-bo, WU Jin-shui. Comparison of Supersonic Diffusion Combustion Flamelet Model Based on Different PDF[J]. Journal of Propulsion Technology, 2015, 36(2): 232-237.)
[13] 范周琴, 孙明波, 刘卫东. 基于火焰面模型的超声速燃烧混合LES/RANS模拟[J]. 推进技术, 2011, 32(2): 191-196. (FAN Zhou-qin, SUN Ming-bo, LIU Wei-dong. Hybrid LES/RANS Simulation of Supersonic Combustion using Flamelet Model[J]. Journal of Propulsion Technology, 2011, 32(2): 191-196.)
[14] Van Oijen J A. Flamelet-Generated Manifolds: Development and Application to Premixed Laminar Flames[D]. Eindhoven: Technische Universiteit Eindhoven, 2002.
[15] Ramaekers W J S. Development of Flamelet Generated Manifolds for Partially-Premixed Flame[D]. Eindhoven: Technische Universiteit Eindhoven, 2011.
[16] 杨金虎. FGM预混及部分预混湍流燃烧模型研究与应用 [D]. 北京:中国科学院工程热物理研究所, 2012.
[17] Lodier G, Vervisch L, Moureau V, et al. Composition-Space Premixed Flamelet Solution with Differential Diffusion for in Situ Flamelet-Generated Manifolds[J]. Combustion and Flame, 2011, 158(10): 2009-2016.
[18] Bekdemir C. Numerical Modeling of Diesel Spray Formation and Combustion[D]. Eindhoven: Technische Universiteit Eindhoven, 2008.
[19] Godel G, Domingo P, Vervisch L. Tabulation of NOx Chemistry for Large-Eddy Simulation of Non-Premixed Turbulent Flames[J]. Proceedings of the Combustion Institute, 2009, 32(1): 1556-1561.
[20] Ketelheun A, Olbricht C, Hahn F, et al. NO Prediction in Turbulent Flames using LES/FGM with Additional Transport Equations[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2975-2982.
[21] Bazdidi-Tehrani F, Zeinivand H. Presumed PDF Modeling of Reactive Two-Phase Flow in a Three Dimensional Jet-Stabilized Model Combustor[J]. Energy Conversion and Management, 2010, 51(1): 225-234.
[22] Peng L, Zhang J. Simulation of Turbulent Combustion and NO Formation in a Swirl Combustor[J]. Chemical Engineering Science, 2009, 64(12): 2903-2914.
[23] Ishii T, Zhang C, Sugiyama S. Effects of NO Models on the Prediction of NO Formation in a Regenerative Furnace[J]. Journal of Energy Resources Technology, 2000, 122(4): 224-228.
[24] Sripathi M, Krishnaswami S, Danis A M, et al. Laminar Flamelet Based NOx Predictions for Gas Turbine Combustors[R]. ASME GT2014-27258.
[25] 陶文铨. 数值传热学[M]. 西安:西安交通大学出版社, 2001.
[26] Shih T H, Liou W W, Shabbir A, et al. A New κ-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation[R]. NASA-TM-106721.
[27] Goodrich. [EB/OL]. http://www.cantera.org.
[28] Bowman C T, Hanson R K, Davidson, et al. [EB/OL]. http://www.me.berkeley.edu/gri_mech.
[29] Ketelheun A Olbricht C, Hahn F, et al. Premixed Generated Manifolds for the Computation of Technical Combustion Systems[R]. ASME GT2009-59940.
[30] Sadasivuni S K. LES Modelling of Non-Premixed and Partially Premixed Turbulent Flames[D]. Loughborough: Loughborough University, 2009.
[31] Kashir B, Tabejamaat S, Jalalatian N. A Numerical Study on Combustion Characteristics of Blended Methane-Hydrogen Bluff-Body Stabilized Swirl Diffusion Flames[J]. International Journal of Hydrogen Energy, 2015, 40(18): 6243-6258.
[32] Lien F S, Liu H, Chui E, et al. Development of an Analytical β-Function PDF Integration Algorithm for Simulation of Non-Premixed Turbulent Combustion[J]. Flow, Turbulence and Combustion, 2009, 83(2): 205-226.
[33] Habibi A, Merci B, Roekaerts D. Turbulence Radiation Interaction in Reynolds-Averaged Navier-Stokes Simulations of Nonpremixed Piloted Turbulent Laboratory-Scale Flames[J]. Combustion and Flame, 2007, 151(1-2): 303-320.
[34] Lee K, Kim H, Park P, et al. CO2 Radiation Heat Loss Effects on NOx Emissions and Combustion Instabilities in Lean Premixed Flames[J]. Fuel, 2013, 106(4):682-689.
[35] Lee K W, Choi D H. Analysis of NO Formation in High Temperature Diluted Air Combustion in a Coaxial Jet Flame Using an Unsteady Flamelet Model[J]. International Journal of Heat and Mass Transfer, 2009, 52(5-6): 1412-1420.
[36] Grosshandler. [EB/OL]. http://www.ca.sandia.gov/TNF/radiation.html. 收稿日期:2016-09-08;修订日期:2016-11-03。作者简介:唐军,男,博士生,研究领域为航空发动机燃烧室数值计算。E-mail: tangjun207@163.com(编辑:朱立影)
|