[1] Bunker R S. Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges[J]. Journal of Turbomachinery, 2007, 129(2): 193-201.
[2] 李月茹, 戴韧, 王蛟, 等. 双层板冲击-气膜复合冷却结构冷却性能的数值分析[J]. 热能动力工程, 2015, 30(4): 536-540.
[3] 魏建生, 郭涛, 朱惠人, 等. 新型双层壁隔热屏气膜板内壁面换热特性数值研究[J]. 推进技术, 2015, 36(1): 68-74. (WEI Jian-sheng, GUO Tao, ZHU Hui-ren, et al. Numerical Investigation on Internal Heat Transfer Characteristic of Film Plate in a New Double-Wall Liner[J]. Journal of Propulsion Technology, 2015, 36(1): 68-74.)
[4] 毛军逵, 刘震雄, 郭文, 等. 双层壳型冲击/气膜结构内表面换热特性实验[J]. 推进技术, 2007, 28(3):235-240. (MAO Jun-kui, LIU Zhen-xiong, GUO Wen, et al. Experiment on Local Heat Transfer Coefficient of a Double-Decker Jet Impingement Film Cooling Structure[J]. Journal of Propulsion Technology, 2007, 28(3): 235-240.)
[5] Jambunathan K, Button B L. Impingement Heat Transferabibliography[J]. Heat Mass Transfer, 1994, 20:1986-1993.
[6] 杨谦, 林震宇, 张弛, 等. 发散冷却与冲击/发散冷却的冷却效率对比[J]. 航空动力学报, 2014, 29(2): 268-275.
[7] Oh S H, Lee D H, Kim K M, et al. Enhanced Cooling Effectiveness in Full-Coverage Film Cooling System with Impingement Jets[R]. ASME GT 2008-50784.
[8] 郁新华, 全栋梁, 刘松龄, 等. 冲击双层壁内通道表面换热系数的研究[J]. 推进技术, 2004, 25(1): 36-43. (YU Xin-hua, QUAN Dong-liang, LIU Song-ling, et al. Investigation of the Internal Heat Transfer Characteristics of Double Impingement Plates[J]. Journal of Propulsion Technology, 2004, 25(1): 36-43.)
[9] 许全宏, 林宇震, 刘高恩. 冲击加多斜孔双层壁冷却方式冲击换热系数[J]. 大连理工大学学报, 2001, 41(1).
[10] 郑杰, 朱惠人, 郭涛, 等. 微尺度冲击冷却通道换热特性实验研究[J]. 推进技术, 2015, 36(1): 82-88. (ZHENG Jie, ZHU Hui-ren, GUO Tao, et al. Experimental Investigation on Jet Impingement Heat Transfer for Micro-Channel[J]. Journal of Propulsion Technology, 2015, 36(1): 82-88.)
[11] 刘友宏, 任浩亮. 气膜孔倾角对层板隔热屏冷却性能影响[J]. 推进技术, 2016, 37(2): 281-288. (LIU You-hong, REN Hao-liang. Effects of Film Cooling Hole Angles of Inclination on Cooling Performance of Lamilloy Heat Shield[J]. Journal of Propulsion Technology, 2016, 37(2): 281-288.)
[12] 许艳芝, 朱惠人, 郑杰. 克努森数在微尺度相似流动特性研究中的作用[J]. 航空动力学报, 2013, 28(8): 1752-1758.
[13] 邢云绯, 仲峰泉, 张新宇. 冲击射流结构中应用粗糙表面的实验研究[J]. 工程热物理学报, 2012, 33(9):1605-1608.
[14] 张春平. 粗糙度对微细通道内流动与换热特性影响的实验研究与理论分析[D]. 北京:中国科学院, 2007.
[15] Qi S L, Zhang P, Wang R Z, et al. Single Phase Pressure Drop and Heat Transfer Characteristics of Turbulent Liquid Nitrogen Flow in Micro-Tubes[J]. International Journal of Heat Mass Transfer, 2017, 50.
[16] Bunker R S. The Effect of Thermal Barrier Coating Roughness Magnitude on Heat Transfer with and without Flow Path Surface Steps[R]. ASME IMECE 2003-41073.
[17] Turner S E, Lam L C, Faghri M, et. al. Experimental Investigation of Gas Flow in Micro-Channels[J]. Journal of Heat Transfer, 2004, 126(5): 753-763.
[18] Weaver S A, Barringer M D, Thole K A. Micro-Channels with Manufacturing Roughness Levels[R]. ASME GT 2010-22976.
[19] Avallone E A, Baumeister T, Sadegh A. Marks’Standard Handbook for Mechanical Engineers[J]. McGraw-Hill Professional, 2006, (1): 13-72.
[20] 王福军. 计算流体动力学分析—CFD软件原理与应用[M]. 北京:清华大学出版社, 2004.
[21] Huang L M. Heat Transfer of an Impinging Jet on a Flat Surface[J]. Heat Mass Transfer, 1994, 37: 1915-1923. 收稿日期:2016-03-23;修订日期:2016-05-17。基金项目:国家自然科学基金(51406124);航空科学基金(2012ZB54006);辽宁省自然科学基金(2015020112)。作者简介:李广超,男,博士,副教授,研究领域为航空发动机热端部件传热冷却。E-mail: ligc706@163.com(编辑:张荣莉)
|