[1] Bohn D, Bonhoff B, Schonenborn H. Combined Aerodynamic and Thermal Analysis of a High-Pressure Turbine Nozzle Guide Vane[R]. 95-YOKOHAMA-IGTC-108.
[2] Bohn D, Heuer T. Conjugate Flow and Heat Transfer Calculation of a High Pressure Turbine Nozzle Guide Vane[R]. AIAA 2001-3304.
[3] Maffulli R, He L. Wall Temperature Effects on Heat Transfer Coefficient for High-Pressure Turbines[J]. Journal of Propulsion and Power, 2014, 30(4): 1080-1090.
[4] Mazur Z, Hernandez R A, Garcia I R, et al. Analysis of Conjugate Heat Transfer of a Gas Turbine First Stage Nozzle[R]. ASME 2005-GT-68004.
[5] Cunha F J, Dahmer M T, Chyu M K. Analsys of Airfoil Trailing Edge Heat Transfer and Its Significance in Thermal-Mechanical Design and Durability[R]. ASME 2005-GT-68108.
[6] Eifel M, Caspary V, Honen H, et al. Experimental and Numerical Analysis of Gas Turbine Blades with Different Internal Cooling Geometries[J]. Journal of Turbomachinery, 2011, 133(1): 1018-1026.
[7] Yusop N M, Ali A H, AbdullahM Z. Conjugate Film Cooling of a New Multi-Layer Convex Surface of Turbine Blades[J]. International Communications in Heat and Mass Transfer, 2013, 45: 86-94.
[8] Johnson J, King P, Clark J, et al. Genetic Algorithm Optimization of a High-Pressure Turbine Vane Pressure Side Film Cooling Array[J]. Journal of Turbomachinery, 2013, 136(1): 1011-1021.
[9] 罗磊, 迟重然, 卢少鹏, 等. 燃气涡轮静叶考虑叶型及冷却结构的气热耦合优化[J]. 工程热物理学报, 2014, 35(6): 1079-1082.
[10] 王晋声, 罗磊, 崔涛, 等. 燃气涡轮导叶冷却结构设计及数值模拟[J]. 中国电机工程学报, 2014, 34(5): 800-807.
[11] 朱卫兵, 孙润鹏, 徐凌志, 等. 高压涡轮导向器叶片冲击冷却数值研究[J]. 推进技术, 2012, 33(5):710-718. (ZHU Wei-bing, SUN Run-peng, XU Ling-zhi, et al. Numerical Study on Impinging Cooling for a High-Pressure Turbine Blade[J]. Journal of Propulsion Technology, 2012, 33(5):710-718.)
[12] 罗磊, 卢少鹏, 迟重然, 等. 气热耦合条件下涡轮动叶叶型与冷却结构优化[J]. 推进技术, 2014, 35(5):603-609. (LUO Lei, LU Shao-peng, CHI Zhong-ran, et al. Conjugate Heat Transfer Optimization for Blade Profiles and Cooling Structure in Turbine Rotor[J]. Journal of Propulsion Technology, 2014, 35(5): 603-609.)
[13] 刘聪, 朱惠人, 许卫疆, 等. 跨声速涡轮导叶吸力面换热特性数值研究[J]. 推进技术, 2015, 36(7):1046-1053. (LIU Cong, ZHU Hui-ren, XU Wei-jiang, et al. Numerical Study for Heat Transfer Characteristics on Suction Side of Transonic Nozzle Guide Vane[J]. Journal of Propulsion Technology, 2015, 36(7):1046-1053.)
[14] 钟易成, 张村元, 徐伟祖, 等. 导叶冷却对涡轮级性能影响的数值研究[J]. 航空动力学报, 2014, 29(4): 907-916.
[15] Bolaina C, Teloxa J, Varela C, et al. Thermomechanical Stress Distributions in a Gas Turbine Blade Under the Effect of Cooling Flow Variations[J]. Journal of Turbomachinery, 2013, 135(3): 1-9.
[16] Sierra F Z, Narzary D, Bolaina C, et al. Heat Transfer and Thermal Mechanical Stress Distributions in Gas Turbine Blades[R]. ASME 2009-GT-59194.
[17] Amezcua A C, Czerwiec Z M, Munoz A G, et al. Thermomechanical Transient Analysis and Conceptual Optimization of a First Stage Bucket[J]. ASME Journal of Turbomachine, 2011, 133(1): 1031-1037.
[18] Kim K M, Park J S, Lee D H, et al. Analysis of Conjugated Heat Transfer, Stress and Failure in a Gas Turbine Blade with Circular Cooling Passages[J]. Engineering Failure Analysis, 2011, 18(4): 1212-1222.
[19] Wang B X, Zhang W H, Xie G N, et al. Multiconfiguration Shape Optimization of Internal Cooling Systems of a Turbine Guide Vane Based on Thermomechanical and Conjugate Heat Transfer Analysis[J]. Journal of Heat Transfer, 2015, 137(6): 1004-1011.
[20] 中国航空材料手册(第二版), 变形高温合金, 铸造高温合金[M]. 北京:中国标准出版社, 2001. 收稿日期:2016-03-28;修订日期:2016-05-17。基金项目:中国科学院重点部署项目(KGZD-EW-302-3);“九七三”钢铁生产过程高效节能基础研究(2012CB720406)。作者简介:穆丽娟,女,博士生,研究领域为叶片气热耦合及疲劳寿命计算。E-mail: mulijuan@iet.cn(编辑:梅瑛)
|