[1] 葛绍岩, 刘登瀛, 徐靖中, 等. 气膜冷却[M]. 北京:科学出版社, 1985.
[2] 李广超, 朱惠人, 廖乃冰, 等. 带单排气膜孔的叶片前缘气膜冷却换热实验[J]. 推进技术, 2008, 29(3):290-294. (LI Guang-chao, ZHU Hui-ren, LIAO Nai-bing, et al. Experimental Investigation of Leading Edge Film Cooling Heat Transfer with a Row of Film Cooling Holes[J]. Journal of Propulsion Technology, 2008, 29(3): 290-294.)
[3] Aupoix B, Mignosi A, Viala S, et al. Experimental and Numerical Study of Supersonic Film Cooling[J]. AIAA Journal, 1988, 36(6): 915-923.
[4] Ligrani P M, Saumweber C, Schulz A, et al. Shock Wave-Film Cooling Interactions in Transonic Flows[R].ASME 2001-GT-0133.
[5] Knuth E L. The Mechanics of Film Cooling[J]. Journal of Jet Propulsion, 1954, 24: 359-365.
[6] Bodonyi R J, Smith F T. Shock-Wave Laminar Boundary-Layer Interaction in Supercritical Transonic Flow[J]. Computers and Fluids, 1986, 14(2): 97-108.
[7] 李素循. 激波与边界层主导的复杂流动[M]. 北京:科学出版社, 2007.
[8] Zhang X Z, Hassan I. Computational Study of the Effects of Shock Waves on Film Cooling Effectiveness[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(3): 855-866.
[9] Guiho F, Alizard F, Robinet J C, et al. Instabilities in Oblique Shock Wave/ Laminar Boundary-Layer Interactions[J]. Journal of Fluid Mechanics, 2016, 789: 1-35.
[10] 刘宁, 孙纪宁. 旋转对气膜冷却影响的大涡模拟[J]. 推进技术, 2011, 32(2): 245-252. (LIU Ning, SUN Ji-ning. Large Eddy Simulation of the Effect of Rotation on Film Cooling[J]. Journal of Propulsion Technology, 2011, 29(3): 290-294.)
[11] Peng Wei, Jiang Peixue . Influence of Shock Wave on Supersonic Flim Cooling[J]. Journal of Spacecraft and Rockets, 2009, 46(1): 67-73.
[12] Salvadori S, Montomoli F, Martell F, et al. Film-Cooling Performance in Supersonic Flows: Effect of Shock Impingement[J]. Proceeding of the Institution of Mechanical Engineers, Part A: Journal of Power & Energy, 2013, 227(3): 295-305.
[13] Konopka M, Meinke M, Wolfgang S, et al. Large-Eddy Simulation of Shock/Cooling-Film Interaction[J]. Angewandte Chemie, 2013, 45(18): 2962-5.
[14] Konopka M, Meinke M, Schroder W, et al. Large-Eddy Simulation of High Mach Number Film Cooling with Shock-Wave Interaction[J]. Progress in Flight Physics, 2013, 5: 309-326.
[15] 苏纬仪, 张堃元, 金志光, 等. 一种抑制激波边界层相互作用的新型无源被动控制[J]. 空气动力学学报, 2011, 29(6): 738-743.
[16] Hyde C R, Smith B R, Schetz J A, et al. Turbulence Measurements for Heated Gas Slot Injection in Supersonic Flow[J]. AIAA Journal, 1990, 28(9): 1605-1614.
[17] Peng Wei, Jiang Peixue. Effect of Shock Wave on Supersonic Film Cooling with a Slotted Wall[J]. Applied Thermal Engineering, 2014, 62(1): 187-196.
[18] Jia Z, Bing S. Experiments on Film Cooling with Sonic Injection into a Supersonic Flow[J]. 航空动力学报, 2015, 30(5): 1084-1091.
[19] 李广超, 陈钰恺, 刘永泉, 等. 利用W型槽提高气膜冷却效率机理[J]. 推进技术, 2016, 37(3): 520-526. (LI Guang-chao, CHEN Yu-kai, LIU Yong-quan, et al. Mechanism on Increasing Film Cooling Effectiveness by W Shape Slots[J]. Journal of Propulsion Technology, 2016, 37(3): 520-526.)(编辑:史亚红) 收稿日期:2016-04-09;修订日期:2016-06-01。作者简介:徐华,男,硕士生,研究领域为液体火箭发动机热防护。E-mail: hxu1415@buaa.edu.cn
|