[1] Schapery R A. An Engineering Theory of Nonlinear Viscoelasticity with Applications[J]. International Journal of Solids Structures, 1966, 2(3): 407-425.
[2] Schapery R A. On the Characterization of Nonlinear Viscoelastic Materials[J]. Polymer Engineering and Science, 1969, 9(4): 295-310.
[3] Tscharnuter D, Jerabek M, Major Z, et al. Uniaxial Nonlinear Viscoelastic Viscoplastic Modeling of Polypropylene[J]. Mechanics of Time-Dependent Materials, 2011, 16 (3): 275-286.
[4] Tscharnuter D, Jerabek M, Major Z, et al. Irreversible Deformation of Isotactic Polypropylene in the Pre-Yield Regime[J]. European Polymer Journal, 2011, 47(5): 989-996.
[5] Xu J, Chen X, Wang H, et al. Thermo-Damage-Viscoelastic Constitutive Model of HTPB Composite Propellant[J]. International Journal of Solids and Structures, 2014, 51(18): 3209-3217.
[6] 孟红磊. 改性双基推进剂含累积损伤的非线性粘弹性本构方程[J]. 固体火箭技术, 2014, 37(2): 192-197.
[7] Inglis H M. Modeling the Effect of Debonding on the Constitutive Response of Heterogeneous Materials[D]. Champaign: University of Illinois at Urbana-Champaign, 2014.
[8] 职世君, 孙冰, 张建伟. 基于表面粘结损伤的复合固体推进剂细观损伤数值模拟[J]. 推进技术, 2013, 34(2):273-279. (ZHI Shi-jun, SUN Bing, ZHANG Jian-wei. Numerical Simulation of Solid Propellant Mesoscopic Damage Using Surface-Based Cohesive Approach[J]. Journal of Propulsion Technology, 2013, 34(2):273-279.)
[9] 刘著卿, 李高春, 邢耀国, 等. 复合固体推进剂细观损伤扫描电镜实验及数值模拟[J]. 推进技术, 2011, 32(3): 412-416. (LIU Zhu-qing, LI Gao-chun, XING Yao-Guo, et al. Numerical Simulation and SEM Study on the Microstructural Damage of Composite Solid Propellants[J]. Journal of Propulsion Technology, 2011, 32(3): 412-416.)
[10] Lori A V, Farris R J. A Predictive Model for the Mechanical Behavior of Particulate Composites. Part I: Model Derivation[J]. Polymer Engineering and Science, 1993, 33(22): 1458-1465.
[11] Lori A V, Farris R J. A Predictive Model for the Mechanical Behavior of Particulate Composites.Part II: Comparison of Model Predictions to Literature Data[J]. Polymer Engineering and Science, 1993, 33(22): 1466-1474.
[12] Hibbit. ABAQUS Theory Manual[M]. Bilston:Karlsson & Sorensen Inc, 1995.
[13] Farber J N, Farris R J. Model for Prediction of the Elastic Response of Reinforced Materials over Wide Ranges of Concentration[J]. Journal of Applied Polymer Science, 1987, 34(6): 2093-2104.
[14] Han L, Chen X, Xu J S, et al. Research on the Time-Temperature-Damage Superposition Principle of NEPE Propellant[J]. Mechanics of Time-Dependent Materials, 2015, 19(4): 581-599.
[15] Matou? K, Geubelle P H. Finite Element Formulation for Modeling Particle Debonding in Reinforced Elastomers Subjected to Finite Deformations[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 196(2): 620-633.
[16] Jung G D, Youn S K, Kim B K. A Three-Dimensional Nonlinear Viscoelastic Constitutive Model of Solid Propellant[J]. Journal of the Brazilian Society of Mechanical Sciences, 2000, 37(34): 4715-4732.
[17] 周清春, 鞠玉涛, 周长省. 基于Hooke-Jeeves算法的挠性粘接件的高效内聚反演分析[J]. 工程力学, 2015, (4): 1-7.(编辑:史亚红) 收稿日期:2016-06-02;修订日期:2016-07-25。基金项目:江苏省自然科学基金(BK20140772);中央高校基本科研业务费专项资金资助(30915011301;30915118805)。作者简介:韩龙,男,博士生,研究领域为固体火箭发动机药柱结构完整性分析。E-mail: longh_xdrive @126.com
|