[1] Bussing T, Pappas G. An Introduction to Pulse Detonation Engines[R]. AIAA 94-263.
[2] Lee J H S. The Detonation Phenomenon[M]. Cambridge: Cambridge University Press, 2008, 20(5): 445-446.
[3] Brophy C. Detonation Initiation Improvements Using Swept-Ramp Obstacles[R]. AIAA 2010-1336.
[4] Gray J a T, Paschereit C O, Moeck J P. An Experimental Study of Different Obstacle Types for Flame Acceleration and DDT[M]. Berlin: Springer International Publishing, 2015: 265-279.
[5] Hoke J L, Bradley R P, Schauer F R. Impact of DDT Mechanism, Combustion Wave Speed, Temperature, and Charge Quality on Pulsed-Detonation- Engine Performance[R]. AIAA 2005-1342.
[6] KNOx B, Forliti D, Stevens C, et al. Unsteady Flame Speed Control and DDT Enhancement Using Fluidic Obstacles[R]. AIAA 2010-151.
[7] KNOx B, Forliti D, Stevens C, et al. A Comparison of Fluidic and Physical Obstacles for Deflagration-to-Detonation Transition[R]. AIAA 2011-587.
[8] Joseph M, Kareem A. Laminar Deflagrated Flame Interaction with a Fluidic Jet Flow for Deflagration-to-Detonation Flame Acceleration[R]. AIAA 2015-4096.
[9] 白桥栋, 翁春生. 射流对爆轰波传播过程影响的理论研究[J]. 弹道学报, 2013, 25(3): 83-87.
[10] 何建男, 范玮, 肖强, 等. 六毫米内径管道中的单次爆震实验研究[J]. 推进技术, 2014, 35(12): 1722-1728. (HE Jian-nan, FAN Wei, XIAO Qiang, et al. Experimental Research on Single-Cycle Detonation in Tubes with an Inner Diameter of 6 Millimeters[J]. Journal of Propulsion Technology, 2014, 35(12): 1722-1728.)
[11] Clanet C, Searby G. On the “Tulip Flame” Phenomenon[J]. Combustion & Flame, 1996, 105(1-2): 225-238.
[12] Gonzalez M, Borghi R, Saouab A. Interaction of a Flame Front with Its Self-Generated Flow in an Enclosure: The “Tulip Flame” Phenomenon[J]. Combustion & Flame, 1992, 88(2): 201-220.
[13] 何学超. 丙烷空气预混火焰在90°弯曲管道内传播特性的实验和模拟研究[D]. 合肥:中国科学技术大学, 2010.
[14] 孙金华. 火焰精细结构及其传播动力学[M]. 北京:科学出版社, 2011.
[15] Chen P, Li Y, Huang F, et al. Experimental and LES Investigation of Premixed Methane/Air Flame Propagating in a Chamber for Three Obstacle BR Configurations[J]. Journal of Loss Prevention in the Process Industries, 2016, 41.
[16] KNOx B W. The Fluidic Obstacle Technique: An Approach for Enhancing Deflagration-to-Detonation Transition in Pulsed Detonation Engines[D]. Buffalo: the University at Buffalo, State University of New York, 2011.
[17] 李国能, 林江, 李凯, 等. 横向射流中心轨迹和扩展宽度[J]. 化工学报, 2011, 62(1): 66-70.(编辑:史亚红) 收稿日期:2016-04-06;修订日期:2016-06-21。基金项目:国家自然科学基金(91441201;51176158);西北工业大学研究生创意创新种子基金(Z2016101)。作者简介:李舒欣,女,硕士生,研究领域为爆震燃烧及推进技术。E-mail: lishuxin@hotmail.com
|