[1] 郭宁, 顾佐, 邱家稳, 等. 空心阴极在空间技术中的应用[J]. 真空, 2005, 42(5): 32-35.
[2] 杨福全, 江豪成, 张天平, 等. 20cm离子推力器飞行试验工作性能评价[J]. 推进技术, 2016, 37(4): 783-787. (YANG Fu-quan, JIANG Hao-cheng, ZHANG Tian-ping, et al. Flight Test Performance Evaluation of 20cm Ion Thruster[J]. Journal of Propulsion Technology, 2016, 37(4): 783-787.)
[3] 田立成, 高俊, 李兴坤, 等. LHT-100自励磁霍尔推力器热特性测试和热真空实验研究[J]. 推进技术, 2016, 37(4): 793-800. (TIAN Li-cheng, GAO Jun, LI Xing-kun, et al. Experimental Study of Thermal Characteristics and Thermal Vacuum of LHT-100 Self-Excited Hall Thruster[J]. Journal of Propulsion Technology, 2016, 37(4): 793-800.)
[4] Angelo Niko [Grubi?i?]. Microthrusters Based on the T5 and T6 Hollow Cathode[D]. Southampton: University of Southampton, 2009.
[5] 田立成, 石红, 李娟, 等. 航天器表面充电仿真计算和电位主动控制技术[J]. 航天器环境工程, 2012, 29(2): 144-149.
[6] Derek M Blash. The Effects of a Realistic Hollow Cathode Plasma Contactor Model on the Simulation of Bare Electrodynamic Tether Deorbit System[D]. Fort Collins: Colorado State University, 2013.
[7] Ioannis G Mikellides, Ira Katz, Dan M Goebel, et al. Theoretical Model of a Hollow Cathode Plasma for the Assessment of Insert and Keeper Lifetimes[R]. AIAA 2005-4234.
[8] Ioannis G Mikellides, Ira Katz, Dan M Goebel, et al.Theoretical Model of a Hollow Cathode Insert Plasma[R]. AIAA 2004-3817.
[9] Ioannis G Mikellides, Ira Katz, Dan M Goebel. Numerical Simulation of the Hollow Cathode Discharge Plasma Dynamics[C]. Princeton: 29th International Electric Propulsion Conference, 2005.
[10] Riccardo Albertoni, Daniela Pedrini, Fabrizio Paganucci, et al. A Reduced-Order Model for Thermionic Hollow Cathodes [J]. IEEE Transactions on Plasma Science, 2013, 41(7): 1731-1745.
[11] Riccardo Albertoni, Daniela Pedrini, Fabrizio Paganucci, et al. Experimental Characterization of a LaB6 Hollow Cathode for Low-Power Hall Effect Thrusters[C]. Cologne: Space Propulsion, 2014.
[12] Dan M Goebel, Ira Katz. Fundamentals of Electric Propulsion: Ion and Hall Thrusters [M]. New York: Wiley, 2008.
[13] Salhi A, Turchi P J. A First-Principles Model for Orificed Hollow Cathode Operation[R]. AIAA 92-3742
[14] Matthew T Domonkos. A Particle and Energy Balance Model of the Orificed Hollow Cathode[R]. AIAA 2002-4240.
[15] Ira Katz, John R Anderson, James E Polk, et al. One-Dimensional Hollow Cathode Model [J]. Journal of Propulsion and Power, 2003, 19(4): 595-600.
[16] Daniela Pedrini, Riccardo Albertoniy, Fabrizio Paganucci. Theoretical Model of a Lanthanum Hexaboride Hollow Cathode[C]. Washington: 33th International Electric Propulsion Conference, 2013.
[17] Korkmaz O, Celik M. Global Numerical Model for the Assessment of the Effect of Geometry and Operation Conditions on Insert and Orifice Region Plasmas of a Thermionic Hollow Cathode Electron Source[J]. Plasma Phys, 2014, 54(10): 838-850.
[18] Daniela Pedrini, RiccardoAlbertoni , Fabrizio Paganucci, et al. Modeling of LaB6 Hollow Cathode Performance and Life Time[C]. Beijing: 64th International Astronautical Conference, 2014.
[19] 张天平, 刘乐柱, 贾艳辉. 电推进系统空心阴极产品试验技术[J]. 火箭推进, 2010, 36(1): 58-62.
[20] 郭宁, 邱家稳, 顾佐, 等. 20cm氙离子发动机空心阴极3000h寿命试验[J]. 真空与低温, 2006, 12(4): 204-206.
[21] 郭宁, 江豪成, 顾佐. 离子发动机空心阴极寿命预测[J]. 真空, 2009, 46(4): 83-85.(编辑:史亚红) 收稿日期:2016-05-16;修订日期:2016-06-22。作者简介:谷增杰,男,硕士生,研究领域为空间电推进技术与工程。E-mail:guzengjie@foxmail.com
|