[1] Lakshminarayana B. Fluid Dynamics and Heat Transfer of Turbomachinery[M]. New York: John Wiley & Sons, Inc, 1996.
[2] Wisler D C. Core Compressor Exit Stage Study Volume I - Blading Design [R]. NASA-CR-135391, 1977.
[3] Wisler D C, Halstead D E, Beacher B F. Improving Compressor and Turbine Performance through Cost-Effective Low-Speed Testing [R]. ISABE-99-7073.
[4] Wisler D C. Core Compressor Exit Stage Study Volume Vi - Final Report [R]. NASA-CR-165553, 1981.
[5] Wisler D C. Loss Reduction in Axial-Flow Compressors through Low-Speed Model Testing [J]. ASME Journal of Engineering for Gas Turbines and Power, 1985, 107 (2): 354-363.
[6] Smith L H. NASA/GE Fan and Compressor Research Accomplishments [R]. ASME 93-GT-315.
[7] Smith L H. Axial Compressor Aerodesign Evolution at General Electric[J]. Journal of Turbomachinery, 2002, 124 (3): 321-330.
[8] Clemen C, Schrapp H, Gummer V, et al. Design of a Highly-Loaded Four-Stage Low-Speed Research Compressor [R]. ASME GT 2008-50254.
[9] Tschirner T, Johann E, Müller R, et al. Effects of 3d Aerofoil Tip Clearance Variation on a 4-Stage Low Speed Compressor [R]. ASME GT 2006-90902.
[10] Gallimore S J, Bolger J J, Cumpsty N A, et al. The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading-Part I: University Research and Methods Development[J]. Journal of Turbomachinery, 2002, 124 (4): 521-532.
[11] Gallimore S J, Bolger J J, Cumpsty N A, et al. The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading - Part Ⅱ: Low and High-Speed Designs and Test Verification [J]. Journal of Turbomachinery, 2002, 124 (4): 533-542.
[12] Lyes P A. Low Speed Axial Compressor Design and Evaluation; High Speed Representation and Endwall Flow Control Studies [D]. England: Cranfield University, 1999.
[13] Zhu N G, Xu L, Chen M Z. Similarity Transformations for Compressor Blading[J]. Journal of Turbomachinery, 1992, 114 (2): 561-568.
[14] 朱年国, 徐力平, 陈懋章. 高压压气机叶栅的高速模型和低速模型的相似变换准则[J]. 航空动力学报, 1990, 5 (3): 193-198.
[15] 朱年国, 徐力平, 陈懋章. 用于高压压气机叶栅设计的影响矩阵法 [J]. 力学学报, 1992, 24(3): 303-311.
[16] 蒋浩康, 李雨春, 张洪, 等. 研究转子内流动的大尺寸轴流压气机实验装置和动态测量技术[J]. 航空动力学报, 1992, 7(1): 1-9.
[17] 王志强, 胡骏, 王英锋, 等. 用于低速模拟试验的低速模型压气机气动设计 [J]. 航空学报, 2010, 31 (4): 715-723.
[18] 王志强, 胡骏, 罗钜, 等, 多级轴流压气机静子通道三维流场测量 [J]. 推进技术, 2012, 33(3): 371-376. (WANG Zhi-qiang, HU Jun, LUO Ju, et al.Investigation of Three-Dimension Flow in a Multi-Stage Compressor Stator[J]. Journal of Propulsion Technology, 2012, 33 (3): 371-376.)
[19] 于贤君. 压气机低速模拟技术研究以及叶片三维造型优化设计的应用 [D]. 北京:北京航空航天大学, 2011.
[20] Yu C, Ma N, Wang K, et al. A Similitude Method and the Corresponding Blade Design of a Low-Speed Large-Scale Axial Compressor Rotor[J]. Journal of Thermal Science, 2014, 23 (2): 145-152.
[21] 马宁, 于成海, 李继超, 等, 低速大尺寸多级轴流压气机实验台的设计和搭建 [C]. 西安:中国工程热物理学会2014年学术会议:热机气动热力学分会, 2014.
[22] 李艳开, 黄天豪, 孟德君, 等, 压气机转子叶片叶尖流场的低速模化设计[J]. 航空动力学报, 2015, 30 (1): 237-247.
[23] 王英锋, 胡骏, 王志强. 转静干涉对叶片非定常表面压力的影响 [J]. 推进技术, 2010, 31(2): 198-203. (WANG Ying-feng, HU Jun, WANG Zhi-qiang.Effect of Stator-Rotor Interactions on the Blades Surface Pressure[J]. Journal of Propulsion Technology, 2010, 31 (2): 198-203.)
[24] 刘宝杰, 邹正平, 严明, 等. 叶轮机计算流体动力学技术现状与发展趋势 [J]. 航空学报, 2002, 23 (5): 394-404.
[25] Yu X-J, Xu P-F, Zhang Y-F, et al. Influences of Meridional Flowpath on the Performance of Swept Blade in an Axial Compressor Stage[J]. Journal of Aerospace Power, 2015, 30(8): 1875-1887.
[26] Zhao B, Liu B-J. Numerical Evaluation of Tandem Rotor for Highly Loaded Transonic Fan[J]. Journal of Aerospace Power, 2011, (6): 1352-1361.
[27] 于贤君, 袁现立, 刘宝杰, 等. 压气机二维叶型的低速模拟分析 [J]. 工程热物理学报, 2016, 37(4): 1-8.(编辑:梅瑛) * 收稿日期:2016-04-16;修订日期:2016-09-05。基金项目:国家自然科学基金(51476004;51376014)。作者简介:孟德君,男,硕士,高级工程师,研究领域为风扇/ 压气机气动设计。E-mail: 762406405@qq.com通讯作者:于贤君,男,博士,硕导,讲师,研究领域为叶轮机械气动力学。E-mail: yuxj@buaa.edu.cn
|