[1] DANG T Q. A Fully Three-Dimensional Inverse Method for Turbomachinery Blading in Transonic Flows[J]. ASME Journal of Turbomachinery, 1993, 115(2): 354-361.
[2] QIU X W, DANG T Q. 3D Inverse Method for Turbomachine Blading with Splitter Blades[R]. ASME 2000-GT-0526.
[3] Mileshin P C, Van Rooij, Dang T Q, et al. Enhanced Blade Row Matching Capabilities via 3D Multistage Inverse Design and Pressure Loading Manager [R]. ASME GT 2008-50539.
[4] Ahmadi M, Ghaly W. Aerodynamic Inverse Design of Turbomachinery Cascades Using a Finite Volume Method on Unstructured Meshes[J]. Inverse Problems in Science and Engineering, 1998, 6(4): 281-298.
[5] Van Rooij, Meed A. Reformulation of a Three-Dimensional Inverse Design Method for Application in a High-Fidelity CFD Environment[R]. ASME GT 2012-69891.
[6] 周新海, 朱方元. 求解叶栅跨音速流动反问题的有限体积方法[J]. 工程热物理学报, 1985, 6(4): 331-335.
[7] 杨策, 老大中, 蒋滋康. 求解跨声速压气机叶栅粘性流动反问题的数值解[J]. 推进技术, 1999, 20(4):57-60. (YANG Ce, LAO Da-zhong, JIANG Zi-kang. Numerical Solution on Viscous Inverse Problem for Transonic Compressor Cascades[J]. Journal of Propulsion Technology, 1999, 20(4): 57-60.)
[8] 王正明, 贾希诚. 正反问题数值解法相结合三维叶片的优化设计[J]. 工程热物理学报, 2000, 21(5): 567-569.
[9] WANG Z M, CAI R X. A Three-Dimensional Inverse Method Using Navier-Stokes Equation for Turbomachinery Blading[J]. Inverse Problems in Engineering, 2000, 8: 529-551.
[10] 朱阳历. 叶轮机械叶片全三维反问题优化设计方法研究[D]. 北京:中国科学院研究生院, 2012.
[11] 杨金广. 叶轮机械全三维粘性反方法设计技术研究[D]. 西安:西北工业大学, 2013.
[12] Ning F F. MAP: A CFD Package for Turbomachinery Flow Simulation and Aerodynamic Design Optimization [R]. ASME GT 2014-26515.
[13] Jameson A, Schmidt W, Turkel E. Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes[J]. AIAA Journal, 1981, 1259(11): 2004-4325.
[14] 杨金广, 吴虎. 改进的Baldwin-Lomax湍流模型及其在叶轮机械中的应用[J]. 工程热物理学报, 2014, 35(3): 451-455.
[15] 刘昭威, 吴虎. 基于黎曼不变量守恒的轴流压气机反问题设计方法[J]. 推进技术, 2017, 38(9). (LIU Zhao-wei, WU Hu. Axial Compressor Inverse Design Method Based on the Conservation of Riemann Invariant[J]. Journal of Propulsion Technology, 2017, 38(9).)
[16] 刘昭威, 吴虎, 唐晓毅. 改进的反问题边界条件在叶轮机械中的应用[J]. 工程热物理学报, 2015, 36(10): 1-5.
[17] 刘昭威, 吴虎, 唐晓毅. 跨声速轴流压气机转子反问题优化方法[J]. 推进技术, 2015, 36(9):1310-1316. (LIU Zhao-wei, WU Hu, TANG Xiao-yi. Optimization of Transonic Axial Compressor Rotor Using Improved Inverse Method[J]. Journal of Propulsion Technology, 2015, 36(9): 1310-1316.)
[18] 刘昭威, 吴虎, 唐晓毅. 基于反问题设计方法的叶栅激波损失控制[J]. 推进技术, 2014, 35(6): 766-773. (LIU Zhao-wei, WU Hu, TANG Xiao-yi. Shock Wave Loss Control of Cascades Using Inverse Method[J]. Journal of Propulsion Technology, 2014, 35(6): 766-773.)
[19] 刘昭威, 吴虎, 唐晓毅. 跨声速轴流压气机多叶排反问题优化方法[J]. 西北工业大学学报, 2016, 34(1):118-124.
[20] 杨金广, 刘振德, 邵伏永, 等. 基于渗透边界条件的三维粘性叶轮机械气动设计反方法应用研究[J]. 推进技术, 2015, 36(5): 688-695. (YANG Jin-guang, LIU Zhen-de, SHAO Fu-yong, et al. A Study of Applications of 3D Viscous Inverse Method Based on Transpiration Boundary Conditions for Turbomachinery Aerodynamic Design[J]. Journal of Propulsion Technology, 2015, 36(5): 688-695.) * 收稿日期:2016-05-30;修订日期:2016-07-11。作者简介:刘昭威,男,博士生,研究领域为叶轮机械气动热力学。E-mail:rainbow_force2@163.com(编辑:朱立影)
|