[1] 中国科学院. 中国学科发展战略[M]. 北京:科学出版社, 2014.
[2] Starikovskiy A, Aleksandrov N. Plasma-Assisted Ignition and Combustion[J]. Progress in Energy and Combustion Science, 2013, 39(1): 61-110.
[3] Driscoll R, Stoddard W, George A St, et al. Shock Transfer and Shock-Initiated Detonation in a Dual Pulse Detonation Engine/Crossover System[J]. AIAA Journal, 2015, 53(1): 132-139.
[4] 严传俊, 范玮. 脉冲爆震发动机原理及关键技术[M]. 西安:西北工业大学出版社, 2005.
[5] 赵炜, 韩启祥, 王家骅, 等. 热射流点火对多循环爆震管内火焰传播特性的影响[J]. 推进技术, 2015, 36(12): 1846-1851. (ZHAO Wei, HAN Qi-xiang, WANG Jia-hua, et al. Effects of Hot Jet Ignition on Flame Propagation Characteristics in Multi-Cycle Detonation Tube[J]. Journal of Propulsion Technology, 2015, 36(12): 1846-1851.)
[6] 陈星谷, 王治武, 郑龙席, 等. 预爆管布置方式对起爆特性影响的数值模拟研究[J]. 西北工业大学学报, 2013, 31(5): 737-741.
[7] Ju Y, Sun W. Plasma Assisted Combustion: Dynamics and Chemistry[J]. Progress in Energy and Combustion Science, 2015, 48: 21-83.
[8] Takana H, Nishiyama H. Numerical Simulation of Nanosecond Pulsed DBD in Lean Methane-Air Mixture for Typical Conditions in Internal Engines[J]. Plasma Sources Science and Technology, 2014, 23: 034001.
[9] Zhukov V P, Starikovskii A Yu. Effect of a Nanosecond Gas Discharge on Deflagration to Detonation Transition[J]. Combustion, Explosion, and Shock Waves, 2006, 42(2): 195-204.
[10] Rakitin A E, Starikovskii A Yu. Mechanisms of Deflagration-to-Detonation Transition under Initiation by High-Voltage Nanosecond Discharges[J]. Combustion and Flame, 2008, 155: 343-355.
[11] Starikovskiy A, Starikovskiy N, Rakitin A. Plasma-Assisted Ignition and Deflagration-to-Detonation Transition[J]. Philosophical Transactions of the Royal Society A, 2012, 370: 740-773.
[12] Busby K, Corrigan J, Yu S, et al. Effects of Corona, Spark and Surface Discharges on Ignition Delay and Deflagration-to-Detonation Times in Pulsed Detonation Engines[R]. AIAA 2007-1028.
[13] Lefkowitz J K, Guo P, Ombrello T, et al. Schlieren Imaging and Pulsed Detonation Engine Test of Ignition by a Nanosecond Repetitively Pulsed Discharge[J]. Combustion and Flame, 2015, 162: 2496-2507.
[14] Cathey C, Wang F, Tang T, et al. Transient Plasma Ignition for Delay Reduction in Pulse Detonation Engines[R]. AIAA 2007-443.
[15] 郑殿峰, 张义宁, 郑日恒, 等. 交流驱动低温等离子体点火触发爆震可行性研究[J]. 推进技术, 2014, 35(8): 1146-1152. (ZHENG Dian-feng, ZHANG Yi-ning, ZHENG Ri-heng, et al. Investigation on Feasibility of Ignition and Detonation Trigger by Low Temperature Plasma Based on AC Drive[J]. Journal of Propulsion Technology, 2014, 35(8): 1146-1152.)
[16] Starikovskaya S M, Aleksandrov N L, Kosarev I N, et al. Ignition with Low-Temperature Plasma: Kinetic Mechanism and Experimental Verification[J]. High Energy Chemistry, 2009, 43: 213-218.
[17] Han J, Yamashita H. Numerical Study of Effect of Non-Equilibrium Plasma on the Ignition Delay of a Methane-Air Mixture Using Detailed Ion Chemical Kinetics[J]. Combustion and Flame, 2014, 161: 2064-2072.
[18] Kosarev I N, Kindyshev S V, Momot R M, et al. Comparative Study of Nonequilibrium Plasma Generation and Plasma-Assisted Ignition for C2-Hydrocarbons[J]. Combustion and Flame, 2016, 165: 259-271.
[19] Tholin F, Lacoste D A, Bourdon A. Influence of Fast-Heating Processes and O Atom Production by a Nanosecond Spark Discharge on Ignition of a Lean H2-Air Premixed Flame[J]. Combustion and Flame, 2014, 161: 1235-1246.
[20] 于锦禄, 何立明, 丁未, 等. 瞬态等离子体点火和火花塞点火起爆过程的对比研究[J]. 推进技术, 2013, 34(11): 1575-1579. (YU Jin-lu, HE Li-ming, DING Wei, et al. Comparative Investigation on Detonation Initiation Process of Transient Plasma Ignition and Spark Ignition[J]. Journal of Propulsion Technology, 2013, 34(11): 1575-1579.)
[21] Zhou S, Nie W, Che X. Numerical Modeling of Quasi-DC Plasma-Assisted Combustion for Flame Holding Cavity[J]. Combustion Science and Technology, 2016, 188(10): 1640-1654.
[22] Zhou S, Wang F, Che X, et al. Numerical Study of Nonequilibrium Plasma Assisted Detonation Initiation in Detonation Tube[J]. Physics of Plasmas, 2016, 23(12): 123522.
[23] Shih T H, Liou W W, Shabbir A, et al. A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows: Model Development and Validation[J]. Computers Fluids, 1995, 24(3): 227-238.
[24] 熊姹, 严传俊, 邱华. 不同化学反应机理对爆震波模拟的影响[J]. 燃烧学科与技术, 2008, 14(4): 355-360.
[25] Zhou S, Nie W, Che X. Numerical Investigation of Influence of Quasi-DC Discharge Plasma on Fuel Jet in Scramjet Combustor[J]. IEEE Transactions on Plasma Science, 2015, 43: 896-905.
[26] 兰宇丹, 何立明, 丁伟, 等. 不同初始温度下H2/O2混合物等离子体的演化[J]. 物理学报, 2010, 59(4): 2617-2621.
[27] Starikovskiy A. Physics and Chemistry of Plasma-Assisted Combustion[J]. Philosophical Transactions of the Royal Society A, 2015, 373: 20150074.
[28] 陈英. 脉冲爆震发动机不同点火方式DDT过程模拟[D]. 南京:南京理工大学, 2008.
[29] McBride B J, Gordon S. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications[R]. NASA 1996-1311-7.(编辑:史亚红) * 收稿日期:2017-01-03;修订日期:2017-03-08。基金项目:国家自然科学基金(91441123);高超声速冲压发动机技术重点实验室开放基金(CG-2014-05-118)。作者简介:周思引,男,博士生,研究领域为航空航天推进技术。E-mail: siyin_zhou@126.com
|