推进技术 ›› 2018, Vol. 39 ›› Issue (1): 142-151.

• 燃烧 传热 • 上一篇    下一篇

基于共轭换热的涡轮转子热环境预测方法研究

张添翼1,2,李宛蓉1,于 洋1,雷 鸣1,梁新刚2   

  1. 北京动力机械研究所,北京 100074; 清华大学 航天航空学院,北京 100084,北京动力机械研究所,北京 100074,北京动力机械研究所,北京 100074,北京动力机械研究所,北京 100074,清华大学 航天航空学院,北京 100084
  • 发布日期:2021-08-15
  • 作者简介:张添翼, 男,博士生,工程师,研究领域为发动机综合热管理。

Coupled Heat Transfer Predictions of Thermal Environment for a Turbine Rotor

  1. Beijing Power Machinery Institute,Beijing 100074,China; School of Aerospace,Tsinghua University,Beijing 10084,China Coupled Heat Transfer Predictions of Thermal Environment for a Turbine Rotor,Beijing Power Machinery Institute,Beijing 100074,China,Beijing Power Machinery Institute,Beijing 100074,China,Beijing Power Machinery Institute,Beijing 100074,China and School of Aerospace,Tsinghua University,Beijing 10084,China Coupled Heat Transfer Predictions of Thermal Environment for a Turbine Rotor
  • Published:2021-08-15

摘要: 为了开发适用于发动机方案设计阶段的涡轮转子热环境预测方法,开发获得了一种快速而准确的稳态热环境预测算法。算法求解二维和三维导热方程来计算固体导热,用二维边界层算法计算叶身燃气边界条件,用一维流体网络法计算空气系统流量。使用该算法对某型涡扇发动机高压涡轮转子进行了温度场计算,并与试验结果进行了对比,温度误差约为30~40K。对燃气边界和冷气边界分别对比了共轭换热计算和非共轭换热计算模式下结果的差异,温度差值在120K左右,流量相对差值在10%左右。结论表明:对于空气系统边界,共轭模型显著影响计算精度;而对于主流边界,就本文研究的非冷却叶片而言,是否采用共轭模型对温度场预测影响很小。

关键词: 涡轮转子;空气系统;共轭换热;热环境预测

Abstract: In order to predict the heat transfer for gas turbines in conceptual design phase, an algorithm was motivated to provide quick, reliable predictions of steady state temperature field. The analyses used 3-D and 2-D solvers for the heat conduction, 2-D boundary layer solver for the main gas boundary and 1-D solver for the fluid network of the secondary air system (SAS). A full scale turbine rotor was studied with this method. The calculation is consistent with experimental result. The average temperature error is 30~40K. Difference between the coupled and uncoupled model is studied for both of the SAS boundary and the main gas boundary. The maximum temperature difference is 120K, maximum mass flow rate relative difference is 10%. It’s concluded that energy coupling of the SAS boundary remarkably affects the model precision. For non-cooling turbine blades, energy coupling of the main gas boundary have little impact on the temperature prediction.

Key words: Turbine rotor;Air system;Conjugate heat transfer;Thermal environment prediction