[1] Kim V, Popov G, Arkhipov B, et al. Electric Propulsion Activity in Russia[C]. Pasadena, CA: 27th International Electric Propulsion Conference, 2001.
[2] Ahedo E. Plasmas for Space Propulsion[J]. Plasma Physics and Controlled Fusion, 2011, 53(12): 124037.
[3] 毛根旺, 韩先伟, 杨涓, 等. 电推进研究的技术状态和发展前景[J]. 推进技术, 2000, 21(5): 1-5. (MAO Gen-wang, HAN Xian-wei, YANG Juan, et al. Research State of Electric Propulsion and Its Development Prospect[J]. Journal of Propulsion Technology, 2000, 21(5): 1-5.)
[4] 左坤, 王敏, 李敏, 等. 全电推商业卫星平台研究综述[J]. 火箭推进, 2015, 41(2): 13-20.
[5] Grys K, Mathers A, Welander B, et al. Demonstration of 10,400 Hours of Operation on 4.5kW Qualification Model Hall Thruster[R]. AIAA 2010-6698.
[6] Kamhawi H, Haag T, Huang W, et al. Performance and Environmental Test Results of the High Voltage Hall Accelerator Engineering Development Unit[R]. AIAA 2012-3854.
[7] 严立, 王平阳, 欧阳华. 基于PIC/MCC/DSMC方法霍尔推力器热分析[J]. 推进技术, 2015, 36(6): 953-960. (YAN Li, WANG Ping-yang, OUYANG Hua. Thermal Analysis of Hall Thruster by PIC/MCC/DSMC Method[J]. Journal of Propulsion Technology, 2015, 36(6): 953-960.)
[8] Mazouffre S, Echegut P, Dudeck M. A Calibrated Infrared Imaging Study on the Steady State Thermal Behaviour of Hall Effect Thrusters[J]. Plasma Sources Science and Technology, 2006, 16(1): 13-22.
[9] Katz I, Mikellides I G, Hofer R R. Channel Wall Plasma Thermal Loads in Hall Thrusters with Magnetic Shielding[R]. AIAA 2011-6082.
[10] Matlock T S, Hargus W A, Larson C W. Thermographic Characterization and Comparison of 200W and 600W Hall Thrusters[R]. AIAA 2007-5241.
[11] Martinez R A, Dao H, Walker M L R. Power Deposition into the Discharge Channel of a Hall Effect Thruster[J]. Journal of Propulsion and Power, 2013, 30(1): 209-220.
[12] Reilly S W, Sekerak M J, Hofer R R. Transient Thermal Analysis of the 12.5kW HERMeS Hall Thruster[R].AIAA 2016-5024.
[13] Yan L, Wang P, Ouyang H, et al. Thermal Analysis of the Hall Thruster in Vacuum[J]. Vacuum, 2014, 108: 49-55.
[14] 孙明明, 顾左, 马永斌, 等. LHT-100霍尔推力器热特性模拟分析[J]. 推进技术, 2014, 35(12): 1715-1721. (SUN Ming-ming, GU Zuo, MA Yong-bin, et al. Thermal Analysis of a LHT-100 Hall Thruster[J]. Journal of Propulsion Technology, 2014, 35 (12): 1715-1721.)
[15] 田立成, 高俊, 李兴坤, 等. LHT-100自励磁霍尔推力器热特性测试和热真空实验研究[J]. 推进技术, 2016, 37(4): 793-800. (TIAN Li-cheng, GAO Jun, LI Xing-kun, et al. Experimental Study of Thermal Characteristics and Thermal Vacuum of LHT-100 Self-Excited Hall Thruster[J]. Journal of Propulsion Technology, 2016, 37(4): 793-800.)
[16] Vial V, Godard L, Cornu N, et al. PPS?1350-G Performance Assessment with Permanent Magnets[C]. Wiesbaden: 32nd International Electric Propulsion Conference, 2011.
[17] 王二华. 温度对霍尔推力器磁场及放电性能的影响[D]. 哈尔滨:哈尔滨工业大学, 2014.
[18] Mitrofanova O A, Gnizdor R Y, Murashko V M, et al. New Generation of SPT-100[C]. Wiesbaden: 32nd International Electric Propulsion Conference, 2011.
[19] Liu H, Wu B, Yu D, et al. Particle-in-Cell Simulation of a Hall Thruster[J]. Journal of Physics D: Applied Physics, 2010, 43(16): 165202.
[20] Ding Y, Peng W, Wei L, et al. Computer Simulations of Hall Thrusters without Wall Losses Designed Using Two Permanent Magnetic Rings[J]. Journal of Physics D: Applied Physics, 2016, 49(46): 465001.
[21] Yu D, Zhang F, Liu H, et al. Effect of Electron Temperature on Dynamic Characteristics of Two-Dimensional Sheath in Hall Thrusters[J]. Physics of Plasmas, 2008, 15(10): 104501.
[22] Szabo J, Warner N, Martinez-Sanchez M, et al. Full Particle-in-Cell Simulation Methodology for Axisymmetric Hall Effect Thrusters[J]. Journal of Propulsion and Power, 2013, 30(1): 197-208.
[23] Szabo J. Fully Kinetic Numerical Modeling of a Plasma Thruster[D]. Cambridge: Massachusetts Institute of Technology, 2001.
[24] Doss S, Miller K. Dynamic ADI Methods for Elliptic Equations[J]. SIAM Journal on Numerical Analysis, 1979, 16(5): 837-856.
[25] Vahedi V, Surendra M. A Monte Carlo Collision Model for the Particle-in-Cell Method: Applications to Argon and Oxygen Discharges[J]. Computer Physics Communications, 1995, 87(1-2): 179-198.
[26] Grys K, Rayburn C, Haas J. Study of Power Loss Mechanisms in BPT-4000 Hall Thruster[R]. AIAA 2003-5277.(编辑:史亚红) * 收稿日期:2017-03-10;修订日期:2017-06-05。基金项目:国家自然科学基金青年科学基金(51507040);中央高校基本科研业务费专项资金(HIT.NSRIF.2015079); 国家自然科学基金创新研究群体科学基金(51421063)。作者简介:李鸿,男,博士,讲师,研究领域为电推进理论与技术。E-mail: lihong@hit.edu.cn
|