推进技术 ›› 2018, Vol. 39 ›› Issue (1): 231-240.

• 电推进和其它推进 • 上一篇    

磁路温度对霍尔推力器放电热稳定性的影响

李 鸿1,吴 优1,张兴浩2,韩 亮1,于达仁1   

  1. 哈尔滨工业大学 等离子体推进技术实验室,黑龙江 哈尔滨 150001,哈尔滨工业大学 等离子体推进技术实验室,黑龙江 哈尔滨 150001,中国航发沈阳发动机研究所,辽宁 沈阳 110015,哈尔滨工业大学 等离子体推进技术实验室,黑龙江 哈尔滨 150001,哈尔滨工业大学 等离子体推进技术实验室,黑龙江 哈尔滨 150001
  • 发布日期:2021-08-15
  • 作者简介:李 鸿,男,博士,讲师,研究领域为电推进理论与技术。
  • 基金资助:
    国家自然科学基金青年科学基金(51507040);中央高校基本科研业务费专项资金(HIT. NSRIF. 2015079);

Effects of Magnetic Circuit Temperature on Discharge Thermal Stability of a Hall Thruster

  1. Plasma Propulsion Laboratory,Harbin Institute of Technology,Harbin 150001,China,Plasma Propulsion Laboratory,Harbin Institute of Technology,Harbin 150001,China,AECC Shenyang Engine Institute,Shenyang 110015,China,Plasma Propulsion Laboratory,Harbin Institute of Technology,Harbin 150001,China and Plasma Propulsion Laboratory,Harbin Institute of Technology,Harbin 150001,China
  • Published:2021-08-15

摘要: 为研究磁路高温性质变化对霍尔推力器放电热失稳的贡献及影响机理,对不同磁路温度下推力器的工作磁场强度开展了实验测量,对磁路温度变化与通道内等离子体放电行为变化的交互影响开展了Particle-in-Cell数值模拟研究。实验结果表明,当磁路温度由室温升高到600℃时,推力器的工作磁场强度发生了衰减,尽管衰减量不大(约5%)。模拟结果表明,磁路高温引起的场强衰减改变了推力器放电时的电导率及电势分布,进而对电子能量各向分布、粒子密度分布等造成了影响,促进了电子在壁面的通量及能量损失,主导了壁面等离子体沉积功率的增加,从而进一步加剧了磁路温度的增长。这是一个具有正反馈性质的过程;因此,若不能通过外部手段有效控制磁路温度,将诱发霍尔推力器的放电热失稳。

关键词: 霍尔推力器;磁路温度;磁场强度;等离子体放电;热稳定性

Abstract: In order to clarify the effects and intrinsic mechanism of high magnetic circuit temperature on the thermal discharge instability of a Hall thruster, an experimental study on the working magnetic field intensity of the thruster at different magnetic circuit temperature was carried out. Meanwhile, a Particle-in-Cell simulation was performed on the interaction between the change of magnetic circuit temperature and the change of plasma discharge behavior. The experimental results show that when the magnetic circuit temperature rises from room temperature to 600℃, the working magnetic field intensity of the thruster is attenuated despite that the attenuation is not significant (about 5%). The simulation results show that the attenuation of magnetic field intensity, caused by the high magnetic circuit temperature, changes the distribution of electron cross-field mobility as well as electric potential, and consequently impacts the distributions of electron energy, particle density, and et al. As a result, both the flux and the energy that electrons loss on the channel walls are promoted, which dominates the variation of total deposition power and thus exacerbates the increase of magnetic circuit temperature. This is a process with a matter of positive feedback, therefore, if the magnetic circuit temperature cannot be controlled effectively, the thruster discharge would be unstable.

Key words: Hall thruster;Magnetic circuit temperature;Magnetic field intensity;Plasma discharge;Thermal stability