[1] 占云. 高超声速技术(HyTech)计划[J]. 飞航导弹,2003, (3): 44-50.
[2] 肖红雨, 高峰, 李宁. 再生冷却技术在超燃冲压发动机中的应用与发展[J]. 飞航导弹, 2013, (8):78-81.
[3] Youn B, Mills A F. Cooling Panel Optimization for the Active Cooling System of a Hypersonic Aircraft[J]. Journal of Thermophysics and Heat Transfer, 1995, 9(1): 136-143.
[4] WietingR A, Gufi R W. Thermal-Structural Design/Analysis of an Airframe-Integrated Hydrogen-Cooled Scramjet[J]. Journal of Aircraft, 1976, 13(3): 192-197.
[5] Salakhutdinov G M. Development of Methods of Cooling Liquid Propellant Rocket Engines (ZhRDs), 1903-1970[M]. USA: History of Rocketry and Astronautics, 1990: 115-122.
[6] Gascoin N, Abraham G, Gillard P. Thermal and Hydraulic Effects of Coke Deposit in Hydrocarbon Pyrolysis Process[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(1): 57-65.
[7] Jiang Qin, Silong Zhang, Wen Bao, et al. Off-Design Condition Cooling Capacity Analysis of Recooling Cycle for a Scramjet[J]. Journal of Propulsion and Power, 2012, 28(6): 1285-1292.
[8] Jiang Qin, Silong Zhang, Wen Bao, et al. Effect of Recooling Cycle on Performance of Hydrogen Fueled Scramjet[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18528-18536.
[9] Jiang Qin, Wen Bao, Silong Zhang, et al. Thermodynamic Analysis for a Chemically Recuperated Scramjet[J]. Science China Technological Sciences, 2012, 55(11): 3204-3212.
[10] Kazmar R. Airbreathing Hypersonic Propulsion, at Pratt & Whitney-Overview[R]. AIAA 2005-3256.
[11] Faulkner R. The Evolution of the HySet Hydrocarbon Fueled Scramjet Engine[R]. AIAA 2003-7005.
[12] Wishart D, Fortin T, Guinan D. Design, Fabrication and Testing of an Actively Cooled Scramjet Propulsion System[R]. AIAA 2003-0015.
[13] Boudreau A. Hypersonic Air-Breathing Propulsion Efforts in the Air Force Research Laboratory[R]. AIAA 2005-3255.
[14] Moses P L, Rausch V L, Nguyen L T, et al. NASA Hypersonic Flight Demonstrators-Overview, Status, and Future Plans[J]. Acta Astronautica, 2004, 55(3): 619-630.
[15] 牛文, 李文杰. 美国空军圆满完成X-51A第四次试飞[J]. 飞航导弹, 2013, (5).
[16] Daniau E, Bouchez M. Numerical Simulations and Experimental Results of Endothermic Fuel Reforming for Scramjet Cooling Application[R]. AIAA 2006-7975.
[17] Burnes R, Lee M J, McManigal J, et al. Thermal Management in Hypersonic Vehicles: Characterization of Phase Change Materials[R]. AIAA 2001-3974.
[18] Sobel D R, Spadaccini L J. Hydrocarbon Fuel Cooling Technologies for Advanced Propulsion[J]. Journal of Engineering for Gas Turbines and Power, 1997, 119: 344-351.
[19] Huang H, Sobel D R, Spadaccini L J. Endothermic Heat-Sink of Jet Fuels for Scramjet Cooling[R]. AIAA 2002-3871.
[20] Alexey V Korabelnikov, Alexander L Kuranov. Thermal Protection Using Endothermic Fuel Conversion[R]. AIAA 2005-3368.
[21] 高涵, 李祖光, 厉刚, 等. 吸热型碳氢燃料催化脱氢的研究述评[J]. 推进技术, 1998, 19 (4): 101-104.(GAO Han, LI Zu-guang, LI Gang, et al. Review of Dehydrognation Catalysis of Endothermic Hydrocarbon Fuel[J]. Journal of Propulsion Technology, 1998, 19(4): 101-104.)
[22] 符全军, 燕珂, 杜宗罡, 等. 吸热型碳氢燃料研究进展[J]. 火箭推进, 2005, 31(5): 33-36.
[23] Kuranov A L, Korabelnicov A V, Kuchinskiy V V, et al. Fundamental Techniques of the “AJAX”. Modern State of Research[R]. AIAA 2001-1915.
[24] Lau K, Scuden L, Petley D, et al. Dual Fuel Vehicle Thermal Management[R]. AIAA 96-4596.
[25] Fischer A. Design of a Fuel Thermal Management System for Long Range Air Vehicles[R]. AIAA 2005-5647.
[26] Wen B, Jiang Q, Zhou W, et al. Parametric Performance Analysis of Multiple Re-Cooled Cycle for Hydrogen Fueled Scramjet[J]. International Journal of Hydrogen Energy, 2009, 34(17): 7334-7341.
[27] 秦江. 超燃冲压发动机冷却/回热复合循环研究 [D]. 哈尔滨:哈尔滨工业大学, 2012.
[28] Qin J, Zhang S, Bao W, et al. Off-Design Condition Cooling Capacity Analysis of Recooling Cycle for a Scramjet[J]. Journal of Propulsion & Power, 2012, 28(6): 1285-1292.
[29] Bao W, Duan Y, Zhou W, et al. Hydrogen-Fueled Scramjet Cooling System Investigation Using Combustor and Regenerative Cooling Coupled Model[J]. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2013, 228(6): 820-830.
[30] Fan X, Yu G, Li J, et al. Combustion and Ignition of Thermally Cracked Kerosene in Supersonic Model Combustors[J]. Journal of Propulsion and Power, 2007, 23(2): 317-324.
[31] Wang Y Z, Hua Y X, Meng H. Numerical Studies of Supercritical Turbulent Convective Heat Transfer of Cryogenic-Propellant Methane[J]. Journal of Thermophysics and Heat Transfer, 2010, 24(3): 490-500.
[32] Maurice L Q, Lander H, Edwards T, et al. Advanced Aviation Fuels: a Look Ahead via a Historical Perspective[J]. Fuel, 2001, 80(5): 747-756.
[33] Meyer M L, Edwards T, Eitman D A. Evaluation of Heat Transfer and Thermal Stability of Supercritical JP-7 Fuel[M]. USA: National Aeronautics and Space Administration, 1997.
[34] Linne D, Meyer M, Braun D, et al. Investigation of Instabilities and Heat Transfer Phenomena in Supercritical Fuels at High Heat Flux and Temperatures[R]. AIAA 2000-3128.
[35] Stiegemeier B, Meyer M, Taghavi R. A Thermal Stability and Heat Transfer Investigation of Five Hydrocarbon Fuels: JP-7, JP-8, JP-8+100, JP-10, and RP-1[R]. AIAA 2002-3873.
[36] Helfrich T M, Schauer F R, Bradley R P, et al. Evaluation of Catalytic and Thermal Cracking in a JP-8 Fueled Pulsed Detonation Engine[R]. AIAA 2007-235
[37] Edwards T, DeWitt M J, Shafer L, et al. Fuel Composition Influence on Deposition in Endothermic Fuels[R]. AIAA 2006-7973.
[38] Nagley E, King P, Schauer F, et al. Fuel Composition Analysis of Endothermically Heated JP-8 Fuel for Use in a Pulse Detonation Engine[D]. USA: Defense Technical Information Center, 2008.
[39] 李中洲, 朱惠人. 超临界压力下航空煤油传热特性[J]. 推进技术, 2011, 32(2): 261-265. (LI Zhong-zhou, ZHU Hui-ren. Heat Transfer Characteristics of Kerosene in Micro-Channel under Supercritical Pressure[J]. Journal of Propulsion Technology, 2011, 32(2): 261-265.)
[40] 张斌, 张春本, 邓宏武, 等. 超临界压力下碳氢燃料在竖直圆管内换热特性[J]. 航空动力学报, 2012, 27(3): 595-603.
[41] Zhong F, Fan X, Yu G, et al. Heat Transfer of Aviation Kerosene at Supercritical Conditions[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 543-550.
[42] Chen W, Fang X. Modeling of Convective Heat Transfer of RP-3 Aviation Kerosene in Vertical Miniature Tubes under Supercritical Pressure[J]. International Journal of Heat and Mass Transfer, 2016, 95: 272-277.
[43] Hua Y X, Wang Y Z, Meng H. A Numerical Study of Supercritical Forced Convective Heat Transfer of n-Heptane Inside a Horizontal Miniature Tube[J]. The Journal of Supercritical Fluids, 2010, 52(1): 36-46.
[44] Li X, Zhong F, Fan X, et al. Study of Turbulent Heat Transfer of Aviation Kerosene Flows in a Curved Pipe at Supercritical Pressure[J]. Applied Thermal Engineering, 2010, 30(13): 1845-1851.
[45] Li X, Huai X, Cai J, et al. Convective Heat Transfer Characteristics of China RP-3 Aviation Kerosene at Supercritical Pressure[J]. Applied Thermal Engineering, 2011, 31(14-15): 2360-2366.
[46] Zhang C, Xu G, Sun J, et al. Modified K-Ε Model for RP-3 Kerosene in a Horizontal Circular Tube at Supercritical Pressure[J]. Applied Thermal Engineering, 2016, 102: 1403-1411.
[47] Liang J, Liu Z, Pan Y. Coupled Heat Transfer of Supercritical n-Decane in a Curved Cooling Channel[J]. Journal of Thermophysics and Heat Transfer, 2016, 30(3): 1-7.
[48] Jianhan Liang, Zhiqi Liu, Yu Pan. Flight Acceleration Effect on Heat Transfer Deterioration of Actively Cooled Scramjet Engines[J]. Journal of Thermophysics and Heat Transfer, 2016, 30(2): 279-287.
[49] Sunden B A, Wu Z, Huang D. Comparison of Heat Transfer Characteristics of Aviation Kerosene Flowing in Smooth and Enhanced Mini Tubes at Supercritical Pressures[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2016, 26(3-4): 1289-1308.
[50] 屈云凤. 超燃冲压发动机冷却通道内碳氢燃料传热及裂解特性研究[D]. 哈尔滨:哈尔滨工业大学, 2010.
[51] 谢凯利. 小尺度矩形通道内碳氢燃料流动及强化换热数值计算及实验研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
[52] Liu P, Zhou H, Gao X, et al. An Experimental and Numerical Investigation on Thermal Cracking of n-Decane in the Microchannel[J]. Petroleum Science and Technology, 2016, 34(6): 555-561.
[53] Ward T, Zabarnick S, Ervin J, et al. Simulations of Flowing Mildly-Cracked Normal Alkanes Incorporating Proportional Product Distributions[J]. Journal of Propulsion & Power, 2004, 20(3): 394-402.
[54] Ward T A, Ervin J S, Zabarnick S, et al. Pressure Effects on Flowing Mildly-Cracked n-Decane[J]. Journal of Propulsion & Power, 2005, 21(2): 344-355.
[55] Zhu Y, Liu B, Jiang P. Experimental and Numerical Investigations on n-Decane Thermal Cracking at Supercritical Pressures in a Vertical Tube[J]. Energy & Fuels, 2013, 28(1): 2187-2193.
[56] Bo R, Meng H, Yang V. Simplification of Pyrolytic Reaction Mechanism and Turbulent Heat Transfer of n-Decane at Supercritical Pressures[J]. International Journal of Heat & Mass Transfer, 2014, 69(2): 455-463.
[57] Xu K, Meng H. Modeling and Simulation of Supercritical-Pressure Turbulent Heat Transfer of Aviation Kerosene with Detailed Pyrolytic Chemical Reactions[J]. Energy & Fuels, 2015, 29(7): 4137-4149.
[58] 冯宇. 超临界碳氢燃料流动裂解耦合特性的数值研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
[59] Gascoin N, Gillard P, Dufour E, et al. Validation of Transient Cooling Modeling for Hypersonic Application[J]. Journal of Thermophysics & Heat Transfer, 2007, 21(1): 86-94.
[60] Bao W, Li X, Qin J, et al. Efficient Utilization of Heat Sink of Hydrocarbon Fuel for Regeneratively Cooled Scramjet[J]. Applied Thermal Engineering, 2012, 33-34(1): 208-218.
[61] Qin J, Zhang S, Bao W, et al. Thermal Management Method of Fuel in Advanced Aeroengines[J]. Energy, 2013, 49: 459-468.
[62] 蒋劲. 超燃冲压发动机燃烧室再生冷却研究[D]. 西安:西北工业大学, 2006.
[63] 段艳娟. 超燃冲压发动机主动热防护结构及性能优化研究[D]. 哈尔滨:哈尔滨工业大学, 2012.
[64] 蒋劲, 张若凌, 乐嘉陵. 超燃冲压发动机再生冷却热结构设计的计算工具[J]. 实验流体力学, 2006, 20(3): 1-7.
[65] Zhang S, Feng Y, Zhang D, et al. Parametric Numerical Analysis of Regenerative Cooling in Hydrogen Fueled Scramjet Engines[J]. International Journal of Hydrogen Energy, 2016, 41(25): 10942-10960.
[66] Zhang S, Qin J, Xie K, et al. Thermal Behavior Inside Scramjet Cooling Channels at Different Channel Aspect Ratios[J]. Journal of Propulsion & Power, 2015, 127:1-14.
[67] Zhang S, Feng Y, Jiang Y, et al. Thermal Behavior in the Cracking Reaction Zone of Scramjet Cooling Channels at Different Channel Aspect Ratios[J]. Acta Astronautica, 2016, 127: 41-56.
[68] 曹杰, 谢凯利, 秦江, 等. 矩形通道内球形凹陷排布方式对流动换热影响的数值研究[C]. 大连:中国工程热物理学会, 2015.
[69] Xu K, Tang L, Meng H. Numerical Study of Supercritical-Pressure Fluid Flows and Heat Transfer of Methane in Ribbed Cooling Tubes[J]. International Journal of Heat & Mass Transfer, 2015, 84: 346-358.
[70] Feng Y, Huang H, Li T, et al. Flow Field and Heat Transfer Analysis of Local Structure for Regenerative Cooling Panel[J]. 热科学学报, 2012, 21(2): 172-178.
[71] Yu F, Jiang Q, Wen B, et al. Numerical Analysis of Convective Heat Transfer Characteristics of Supercritical Hydrocarbon Fuel in Cooling Panel with Local Flow Blockage Structure[J]. Journal of Supercritical Fluids, 2014, 88(2): 8-16.
[72] 王飞. 带有化学反应的流体网络计算方法与应用研究[D]. 哈尔滨:哈尔滨工业大学, 2013.
[73] 刘升君, 金峰, 景小龙, 等. 冲压发动机燃烧室再生冷却数值模拟研究[J]. 江苏航空, 2010, (S1): 24-27.
[74] 姜俞光. 考虑化学反应的并联通道高温碳氢燃料流量分配特性研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
[75] 姜俞光, 秦江, 鲍文. 并联通道碳氢燃料流量偏差及抑制方法研究[C]. 大连:中国工程热物理学会, 2015.
[76] Jiang Y, Zhang S, Feng Y, et al. A Control Method for Flow Rate Distribution of Cracked Hydrocarbon Fuel in Parallel Channels[J]. Applied Thermal Engineering, 2016, 105: 531-536.
[77] Qin J, Jiang Y, Li X, et al. Flow Rate Distribution of Cracked Hydrocarbon Fuel in Parallel Pipes[J]. Fuel, 2015, 161: 105-112.
[78] Chen Y, Wang Y, Bao Z, et al. Numerical Investigation of Flow Distribution and Heat Transfer of Hydrocarbon Fuel in Regenerative Cooling Panel[J]. Applied Thermal Engineering, 2015, 98: 628-635.
[79] 鲍文, 周伟星, 周有新, 等. 超燃冲压发动机再生冷却结构的强化换热优化研究[J]. 宇航学报, 2008, 29(1): 252-257.
[80] 夏新林, 艾青. 一种再生冷却面板的温度控制热设计方法[J]. 航空动力学报, 2010, 25(1): 1-5.
[81] 鲍文, 段艳娟, 周伟星. 局部高热流壁面自适应热流控制(一)动态传热建模及分析[C]. 郑州:中国工程热物理学会传热传质学学术会议, 2009.
[82] 于彬, 周伟星, 于文力, 等. 燃料裂解特性对供油系统稳定性的影响[J]. 推进技术, 2013, 34(12):1702-1707. (YU Bin, ZHOU Wei-xing, YU Wen-li, et al. Effects of Fuel Cracking Characteristic on Stability of Fuel Supply System[J]. Journal of Propulsion Technology, 2013, 34(12): 1702-1707.)
[83] Zhou W, Yu B, Qin J, et al. Mechanism and Influencing Factors Analysis of Flowing Instability of Supercritical Endothermic Hydrocarbon Fuel Within a Small-Scale Channel[J]. Applied Thermal Engineering, 2014, 71(1): 34-42.
[84] 严俊杰, 祝银海, 芦泽龙, 等. 超临界压力碳氢燃料瞬态加热响应特性[J]. 化工学报, 2015, 66(S1): 65-70.
[85] Yan J, Liu Z, Bi Q, et al. Heat Transfer of Hydrocarbon Fuel under Steady States and Pressure-Transient States[J]. Journal of Propulsion and Power, 2015, 32(1): 1-8.
[86] 鲍文, 章思龙, 秦江. 再生冷却超燃冲压发动机回热循环分析[C]. 无锡:高超声速科技学术会议, 2010.
[87] 鲍文, 秦江, 周伟星, 等. 一种新型的超燃冲压发动机闭式冷却循环[J]. 工程热物理学报, 2008, 29(12): 1985-1989.
[88] 秦江, 鲍文, 周伟星, 等. 三种燃料超燃冲压发动机冷却循环性能对比研究[C]. 黄山:高超声速科技学术会议, 2009.
[89] Jiang Q, Wen B, Zhang S L, et al. Thermodynamic Analysis for a Chemically Recuperated Scramjet[J]. Science China Technological Sciences, 2012, 55(11):3204-3212.
[90] Jiang Q, Si L Z, Wen B, et al. Experimental Study on Chemical Recuperation Process of Endothermic Hydrocarbon Fuel[J]. Fuel, 2013, 108(11): 445-450.
[91] Qin J, Zhang S, Bao W, et al. Thermal Management Method of Fuel in Advanced Aeroengines[J]. Energy, 2013, 49(1): 459-468.
[92] Wen B, Zhang S, Jiang Q, et al. Numerical Analysis of Flowing Cracked Hydrocarbon Fuel Inside Cooling Channels in View of Thermal Management[J]. Energy, 2014, 67(4): 149-161.
[93] Zhang S, Xiong Y, Cui N, et al. Effect of Channel Aspect Ratio on Chemical Recuperation Process in Advanced Aeroengines[J]. Energy, 2017, 123: 9-19.
[94] Zhang D, Feng Y, Zhang S, et al. Quasi-One-Dimensional Model of Scramjet Combustor Coupled with Regenerative Cooling[J]. Journal of Propulsion & Power, 2016, 32(3): 1-11.
[95] 张铎, 鲍文, 秦江, 等. 碳氢燃料超燃冲压发动机油气涡轮做功能力评估[J]. 推进技术, 2013, 34(12): 1708-1712. (ZHANG Duo, BAO Wen, QIN Jiang, et al. Evaluation of Fuel Vapor Turbine Capacity for Doing Work Onboard for a Hydrocarbon Fueled Scramjet[J]. Journal of Propulsion Technology, 2013, 34(12): 1708-1712.)
[96] Zhang D, Qin J, Feng Y, et al. Performance Evaluation of Power Generation System with Fuel Vapor Turbine Onboard Hydrocarbon Fueled Scramjets[J]. Energy, 2014, 77: 732-741.
[97] Kanda T, Masuya G, Ono F, et al. Effect of Film Cooling/Regenerative Cooling on Scramjet Engine Performances[J]. Journal of Propulsion and Power, 1994, 10(5): 618-624.
[98] 章思龙. 碳氢燃料超燃冲压发动机再生/膜复合冷却特性研究[D]. 哈尔滨:哈尔滨工业大学, 2016.
[99] 鲍文, 张聪, 秦江, 等. 超燃冲压发动机主被动复合热防护系统方案设计思考[J]. 推进技术, 2013, 34(12): 1659-1663. (BAO Wen, ZHANG Cong, QIN Jiang, et al. Design and Consideration of Active and Passive Combined Thermal Protection System of Scramjet[J]. Journal of Propulsion Technology, 2013, 34(12): 1659-1663.)
[100] Gascoin N, Romagnosi L, Fedioun I, et al. Pyrolysis in Porous Media: Part 2.Numerical Analysis and Comparison to Experiments[J]. Journal of Porous Media, 2013, 16(9): 857-873.(编辑:张荣莉) * 收稿日期:2017-01-22;修订日期:2017-04-10。作者简介:章思龙,男,博士,副教授,研究领域为高超声速推进热防护。E-mail: zhangsilong@hit.edu.cn通讯作者:秦江,男,博士,副教授,研究领域为高超声速推进热防护。E-mail: qinjiang@hit.edu.cn
|