推进技术 ›› 2018, Vol. 39 ›› Issue (10): 2252-2273.
黄河峡1,谭慧俊1,庄 逸1,盛发家1,孙 姝2
发布日期:
2021-08-15
作者简介:
黄河峡,男,博士,讲师,研究领域为飞行器进气道技术、内流空气动力学等。E-mail: huanghexia@nuaa.edu.cn
通讯作者:谭慧俊,男,博士,教授,研究领域为飞行器进气道技术、可压缩流体力学与流动控制方法等。
基金资助:
Published:
2021-08-15
摘要: 作为超燃冲压发动机的增压部件,高超声速进气道/隔离段内部存在一系列的复杂流动现象,本文概述了该领域的相关研究进展。高超声速进气道/隔离段内存在多种激波/边界层干扰现象,并受到膨胀波系等的干扰,使其特性偏离了传统基于简化模型的研究结果,具有显著的三维干扰特征、多波组合干扰特征,并在通道内诱导出了显著的二次流,特别是角区旋涡流动。隔离段内存在复杂的激波和膨胀波结构,这些背景波系在隔离段内不断反射,形成显著的流向和横向参数间断。当出口流道发生几何或热力壅塞时,隔离段内会出现更为复杂的激波串现象。激波串和上游背景波系、角涡相干,呈现出明显的偏向性,并在前移过程中可能会出现两种特殊的动态前移过程。尽管最近对高超声速进气道/隔离段内流特性的认识得到了极大地提高,但仍然有较多的基础问题亟待解决。
黄河峡,谭慧俊,庄逸,盛发家,孙姝. 高超声速进气道/隔离段内流特性研究进展[J]. 推进技术, 2018, 39(10): 2252-2273.
HUANG He-xia1,TAN Hui-jun1,ZHUANG Yi1,SHENG Fa-jia1,SUN Shu2. Progress in Internal Flow Characteristics of Hypersonic Inlet/Isolator[J]. Journal of Propulsion Technology, 2018, 39(10): 2252-2273.
[1] Mahoney J J. Inlets for Supersonic Missiles [M]. New York: AIAA Education Series, 1991. [2] Segal C. The Scramjet Engine: Processes and Characteristics[M]. Cambridge: Cambridge University Press, 2009. [3] Curran E T, Heiser W H, Pratt D T, et al. Fluid Phenomena in Scramjet Combustion Systems[J]. Annual Review of Fluid Mechanics, 1996, 28(1): 323-360. [4] 吴颖川, 贺元元, 余安远, 等. 展向截断曲面乘波压缩进气道气动布局[J]. 航空动力学报, 2013, 28(7):1570-1575. [5] 李永洲, 张堃元. 基于马赫数分布可控曲面外/内锥形基准流场的前体/进气道一体化设计[J]. 航空学报, 2015, 36(1): 289-301. [6] 南向军, 张堃元, 金志光. 采用新型基准流场的高超内收缩进气道试验研究[J]. 航空学报, 2014, 35(1):90-96. [7] Zhang K Y. Research Progress of Hypersonic Inlet Inverse Design Based on Curved Shock Compression System[R]. AIAA 2015-3647. [8] Curran E T, Murthy S N B. Scramjet Propulsion[M]. New York: American Institute of Aeronautics and Astronautics, 2000. [9] Matsuo K, Miyazato Y, Kim H D. Shock Train and Pseudo-Shock Phenomena in Internal Gas Flows[J]. Progress in Aerospace Sciences, 1999, 35(1): 33-100. [10] Holger B and John K H. Shock Wave Boundary Layer Interactions[M]. Cambridge: Cambridge University press, 2011. [11] Délery J M. Shock Wave/Turbulent Boundary Layer Interaction and Its Control[J]. Progress in Aerospace Sciences, 1985, 22(4): 209-280. [12] Gaitonde D V. Progress in Shock Wave/Boundary Layer Interactions[J]. Progress in Aerospace Sciences, 2015, 72: 80-99. [13] Simeonides G, Haase W, Manna M. Experimental, Analytical, and Computational Methods Applied to Hypersonic Compression Ramp Flows[J]. AIAA Journal, 1994, 32(2): 301-310. [14] Krishnan L, Sandham N D, Steelant J. Shock-Wave/Boundary-Layer Interactions in a Model Scramjet Intake [J]. AIAA Journal, 2009, 47(7): 1680-1691. [15] Chung K M, Lu F K. Hypersonic Turbulent Expansion-Corner Flow with Shock Impingement[J]. Journal of Propulsion and Power, 1995, 11(3): 441-447. [16] White M E, Ault D A. Expansion Corner Effects on Hypersonic Shock Wave/Turbulent Boundary-Layer Interactions[J]. Journal of Propulsion and Power, 1996, 12(6): 1169-1173. [17] Zhang Y, Tan H, Zhuang Y, et al. Influence of Expansion Waves on Cowl Shock/Boundary Layer Interaction in Hypersonic Inlets[J]. Journal of Propulsion and Power, 2014, 30(5): 1183-1191. [18] Zhufei Li and Jiming Yang. Leading Edge Bluntness Effects on Shock Wave Boundary Layer Interactions near a Convex Corner[R]. AIAA 2015-3601. [19] Sathianarayanan A, Verma S. Experimental Investigation of a Mach 4 Shock-Wave Turbulent Boundary Layer Interaction near an Expansion Corner[R]. AIAA 2015-0112. [20] 张晓嘉, 梁德旺, 黄国平. 二元高超声速进气道内压缩通道/隔离段曲面构型[J]. 推进技术, 2008, 29(1):49-53. (ZHANG Xiao-jia, LIANG De-wang, HUANG Guo-ping. Curved Surface of Internal Contraction Tunnel/Isolator of Two Dimensional Hypersonic Inlet[J]. Journal of Propulsion Technology, 2008, 29(1): 49-53.) [21] Panaras A G. Review of the Physics of Swept-Shock/Boundary Layer Interactions[J]. Progress in Aerospace Sciences, 1996, 32(2): 173-244. [22] Korkegi R H. A Simple Correlation for Incipient-Turbulent Boundary-Layer Separation Due to a Skewed Shock Wave [J]. AIAA Journal, 1973, 11(11): 1578-1579. [23] Oskam B. Three-Dimensional Flow Fields Generated by the Interaction of a Swept Shock Wave with a Turbulent Boundary Layer[D]. Princeton: Princeton University, 1975. [24] Kubota H, Stollery J L. An Experimental Study of the Interaction Between a Glancing Shock Wave and a Turbulent Boundary Layer[J]. Journal of Fluid Mechanics, 1982, 116: 431-458. [25] Alvi F S, Settles G S. Physical Model of the Swept Shock Wave/Boundary-Layer Interaction Flowfield[J]. AIAA Journal, 1992, 30(9): 2252-2258. [26] Dolling D S, McClure W B. Flowfield Scaling in Sharp Fin-Induced Shock Wave/Turbulent Boundary-Layer Interaction[J]. AIAA Journal, 1985, 23(2): 201-206. [27] Dolling D S. Upstream Influence in Conically Symmetric Flow[J]. AIAA Journal, 1985, 23(6): 967-969. [28] Koide S, Saida N, Ogata R. Correlation of Separation Angles Induced by Glancing Interactions[J]. AIAA Journal, 1996, 34(10): 2198-2200. [29] Panaras A G. Numerical Investigation of the High-speed Conical Flow Past a Sharp Fin[J]. Journal of Fluid Mechanics, 1992, 236: 607-633. [30] Knight D D, Badekast D, Horstmant C C, et al. Quasi-conical Flowfield Structure of the Three-Dimensional Single Fin Interaction[J]. AIAA Journal, 1992, 30(12): 2809-2816. [31] Rodi P E, Dolling D S. Behavior of Pressure and Heat Transfer in Sharp Fin-Induced Turbulent Interactions[J]. AIAA Journal, 2015, 33(11): 2013-2019. [32] Fang J, Yao Y, Zheltovodov A A, et al. Investigation of Three-Dimensional Shock Wave/Turbulent-Boundary-Layer Interaction Initiated by a Single Fin[J]. AIAA Journal, 2017, 55(22): 509-523. [33] Dolling D S. Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next?[J]. AIAA Journal, 2001, 39(8): 1517-1531. [34] Reda D C, Murphy J D. Shock Wave/Turbulent Boundary-Layer Interactions in Rectangular Channels[J]. AIAA Journal, 1973, 11(2): 139-140. [35] Dussauge J P, Piponniau S. Shock /Boundary-Layer Interactions: Possible Sources of Unsteadiness[J]. Journal of Fluids & Structures, 2008, 24(8): 1166-1175. [36] Haddad C, Ardissone J P, Debieve J F. Space and Time Organization of a Shock Wave/Turbulent Boundary Layer Interaction[J]. Aerospace Science and Technology, 2005, 9(7): 561-572. [37] Bookey P, Wyckham C, Smits A. Experimental Investigations of Mach 3 Shock Wave Turbulent Boundary Layer Interactions[R]. AIAA 2005-4899. [38] Burton D M F, Titchener N A, Babinsky H. Corner Effect and Separation in Transonic Channel Flows[J]. Journal of Fluid Mechanics, 2011, 679: 247-262. [39] Burton D M F, Babinsky H D M F. Corner Separation Effects for Normal Shock Wave/Turbulent Boundary Layer Interactions in Rectangular Channels[J]. Journal of Fluid Mechanics, 2012, 707(3): 287-306. [40] Babinsky H, Oorebeek J, Cottingham T G. Corner Effects in Reflecting Oblique Shock-Wave/Boundary Layer Interactions[R]. AIAA 2013-0859. [41] Benek J A, Suchyta C J, Babinsky H. The Effect of Wind Tunnel Size and Shock Strength on Incident Shock Boundary Layer Interaction Experiments[R]. AIAA 2014-3336. [42] Benek J A, Suchyta C J, Babinsky H. The Effect of Wind Tunnel Size on Incident Shock Boundary Layer Interaction Experiments [R]. AIAA 2013-0862. [43] Helmer D B, Campo L M, Eaton J K. Three-Dimensional Features of a Mach 2.1 Shock/Boundary Layer Interaction[J]. Experiments in Fluids, 2012, 53(5):1347-1368. [44] Ethan E W, Driscoll J F. Shock Wave Boundary Layer Interactions in Rectangular Inlets: Three-Dimensional Separation Topology and Critical Points[J]. Journal of Fluid Mechanics, 2014, 756: 328-353. [45] Wang B, Sandham N D, Hu Z, et al. Numerical Study of Oblique Shock Wave/Boundary Layer Interaction Considering Sidewall Effects[J]. Journal of Fluid Mechanics, 2015, 767: 526-561. [46] Funderburk M, Narayanaswamy V. Experimental Investigation of Primary and Corner Shock Boundary Layer Interactions at Mild Back Pressure Ratios[J]. Physics of Fluids, 2016, 28(8). [47] Desikan S L N, Job Kurian. Mixing Studies in Supersonic Flow Employing Strut Based Hypermixers[R]. AIAA 2005-3643. [48] Chung J T, Kuo C L. Numerical Investigations on Simple Variable Geometry for Improving Scramjet Isolator Performance[R]. AIAA 2006-4509. [49] Tan H J, Sun S, Huang H X. Behavior of Shock Trains in a Hypersonic Inlet/Isolator Model with Complex Background Waves[J]. Experiments in Fluids, 2012, 53(6):1647-1661. [50] Huang H, Sun S, Tan H, et al. Characterization of Two Typical Unthrottled Flows in Hypersonic Inlet/Isolator Models[J]. Journal of Aircraft, 2015, 52(5): 1715-1721. [51] Herrmann C, Koschel W. Experimental Investigation of the Internal Compression Inside a Hypersonic Intake[R]. AIAA 2002-4130. [52] H?berle J, Gülhan A. Investigation of Two-Dimensional Scramjet Inlet Flowfield at Mach 7[J]. Journal of Propulsion and Power, 2008, 24(3): 446-459. [53] Tan H J, Sun S, Yin Z L. Oscillatory Flows of Rectangular Hypersonic Inlet Unstart Caused by Downstream Mass-Flow Choking[J]. Journal of Propulsion and Power, 2012, 25(1): 138-147. [54] Li Z, Gao W, Jiang H, et al. Unsteady Behaviors of a Hypersonic Inlet Caused by Throttling in Shock Tunnel [J]. AIAA Journal, 2013, 51(10): 2485-2492. [55] Ben-Dor G. Shock Wave Reflection Phenomena[M]. Berlin Heidelberg: Springer, 2007. [56] 杨旸, 姜宗林, 胡宗民. 激波反射现象的研究进展[J]. 力学进展, 2012, 42(2): 141-161. [57] 杨基明, 李祝飞, 朱雨建, 等. 激波的传播与干扰[J]. 力学进展, 2016, 46(1): 541-587. [58] Li H, Ben-dor G. A Parametric Study of Mach Reflection in Steady Flows[J]. Journal of Fluid Mechanics, 1997, 341: 101-125. [59] Hiller R. Shock-Wave/Expansion-Wave Interactions and the Transition Between Regular and Mach Reflection [J]. Journal of Fluid Mechanics, 2007, 575(9): 399-424. [60] Matheis J, Hickel S. On the Transition between Regular and Irregular Shock Patterns of Shock-Wave/Boundary-Layer Interactions[J]. Journal of Fluid Mechanics, 2015, 776(4): 200-234. [61] Mahapatra D, Jagadeesh G. Studies on Unsteady Shock Interactions near a Generic Scramjet Inlet[J]. AIAA Journal, 1971, 47(9): 2223-2231. [62] Jiao X, Chang J, Wang Z, et al. Mechanism Study on Local Unstart of Hypersonic Inlet at High Mach Number [J]. AIAA Journal, 2015, 53(10): 1-11. [63] 尤延铖, 梁德旺, 黄国平. 内乘波式进气道内收缩基本流场研究[J]. 空气动力学学报, 2008, 26(2): 203-207. [64] 王娇, 黄河峡, 谭慧俊. 捕获型线对内转式进气道外压段几何与气动特性的影响[J]. 航空动力学报, 2017, 32(4): 890-899. [65] Huang H X, Tan H J, Sun S, et al, Evolution of Supersonic Corner Vortex in a Hypersonic Inlet/Isolator Model[J]. Physics of Fluids, 2016, 28(12). [66] Reddy D R, Weir L J. Three-Dimensional Viscous Analysis of a Mach 5 Inlet and Comparison with Experimental Data[J]. Journal of Propulsion and Power, 2015, 8(2): 432-440. [67] Karl S Steelant. Crossflow Phenomena in Streamline-Traced Hypersonic Intakes[J]. Journal of Propulsion and Power, 2017, (1). [68] 南向军, 张堃元, 金志光, 等. 矩形转圆形高超声速内收缩进气道数值及试验研究[J]. 航空学报, 2011, 32(6): 988-996. [69] Marconi F. Internal Corner Flow Fields [R]. AIAA 79-0014. [70] 张涵信. 分离流与旋涡运动的结构分析[M]. 北京:国防工业出版社, 2002. [71] Kalkhoran I M, Smart M K. Supersonic Vortex Breakdown during Vortex/Cylinder Interaction[J]. Journal of Fluid Mechanics, 1998, 369(2): 351-380. [72] Kalkhoran I M, Smart M K. Aspects of Shock Wave-Induced Vortex Breakdown[J]. Progress in Aerospace Sciences, 2000, 36(1): 63-95. [73] Neumann E P, Lustwerk F. Supersonic Diffusers for Wind Tunnels[J]. Journal of Applied Mechanics, 1949, 16(2): 195-202. [74] Yamauchi H, Choi B, Kouchi T, et al. Mechanism of Mixing Enhanced by Pseudo-Shock Wave[R]. AIAA 2009-0025. [75] Gnani F, Zare-Behtash H, Kontis K. Pseudo-Shock Waves and Their Interactions in High-Speed Intakes [J]. Progress in Aerospace Sciences, 2016, 82: 36-56. [76] Yi Shi-He, Chen Zhi. Review of Recent Experimental Studies of the Shock Train Flow Field in the Isolator [J].Acta Physica Sinica, 2015, 64(19). [77] Raj N O P, Venkatasubbaiah K. A New Approach for the Design of Hypersonic Scramjet Inlets[J]. Physics of Fluids, 2012, 24 (8). [78] Kumar A, Singh D J, Trexler C A. Numerical Study of the Effects of Reverse Sweep on Scramjet Inlet Performance[J]. Journal of Propulsion and Power, 1992, 8(3): 714-719. [79] 王成鹏. 非对称来流条件下超燃冲压发动机隔离段气动特性研究[D]. 南京:南京航空航天大学, 2005. [80] 曹学斌. 矩形隔离段流动特性及控制规律研究[D]. 南京:南京航空航天大学, 2011. [81] 王成鹏, 张堃元, 金志光, 等. 非均匀超声来流矩形隔离段内流场实验[J]. 推进技术, 2004, 25(4): 349-353. (WANG Cheng-peng, ZHANG Kun-yuan, JIN Zhi-guang, et al. Experimental Investigation on Internal Flow in Rectangular Isolator under Non-Uniform Supersonic Flow[J]. Journal of Propulsion Technology, 2004, 25(4): 349-353.) [82] 张堃元, 王成鹏, 杨建军, 等. 带高超进气道的隔离段流动特性[J]. 推进技术, 2002, 23(4): 311-314. (ZHANG Kun-yuan, WANG Cheng-peng, YANG Jian-jun, et al. Investigation of Flow in Isolator of Hypersonic Inlet[J]. Journal of Propulsion Technology, 2002, 23(4): 311-314.) [83] Wang C P, Zhang K Y, Yang J J. Analysis of Flows in Scramjet Isolator Combined with Hypersonic Inlet[R]. AIAA 2005-24. [84] Sajben M, Bogar T J, Kroutil J C. Experimental Study of Flows in a Two-Dimensional Inlet Model [J]. Journal of Propulsion and Power, 1985, 1(2): 109-117. [85] Wagner J, Yuceil K, Clemens N. Velocimetry Measurements of Unstart of an Inlet-Isolator Model in Mach 5 Flow [J]. AIAA Journal, 2010, 48(9): 1875-1888. [86] 张航, 谭慧俊, 孙姝. 进口斜激波、膨胀波干扰下等直隔离段内的激波串特性[J]. 航空学报, 2010, 31(9): 1733-1739. [87] Papamoschou D, Johnson A. Unsteady Phenomena in Supersonic Nozzle Flow Separation[R]. AIAA 2006-3360. [88] Reijasse P, Corbel B, Soulevant D. Unsteadiness and Asymmetry of Shock-In Separation in a Planar Two-Dimensional Nozzle: A Flow Description [R]. AIAA 99-3694. [89] Johnson A D, Papamoschou D. Instability of Shock-Induced Nozzle Flow Separation[J]. Physics of Fluids, 2010, 22(1). [90] Papamoschou D, Zill A, Johnson A. Supersonic Flow Separation in Planar Nozzles[J]. Shock Waves, 2009, 19(3): 171-183. [91] Bourgoing A, Reijasse P. Experimental Analysis of Unsteady Separated Flows in a Supersonic Planar Nozzle [J]. Shock Waves, 2005, 14(4): 251-258. [92] Su W Y, Zhang K Y. Back-Pressure Effects on the Hypersonic Inlet-Isolator Pseudoshock Motions[J]. Journal of Propulsion and Power, 2013, 29(6): 1391-1399. [93] 田旭昂, 王成鹏, 程克明. Ma5斜激波串动态特性实验研究[J]. 推进技术, 2014, 35(8): 1030-1039. (TIAN Xu-ang, WANG Cheng-peng, CHENG Ke-ming. Experimental Investigation of Dynamic Characteristics of Oblique Shock Train in Mach 5 Flow[J]. Journal of Propulsion Technology, 2014, 35(8): 1030-1039.) [94] Fischer C, Olivier H. Experimental Investigation of the Internal Flow Field of a Scramjet Engine [R]. AIAA 2009-7369. [95] Fischer C, Olivier H. Experimental Investigation of the Shock Train in an Isolator of a Scramjet Inlet[R]. AIAA 2011-2220. [96] Lin K C, Tam C J. Effects of Temperature and Heat Transfer on Shock Train Structures inside Constant-Area Isolators[R]. AIAA 2006-817. [97] Frauholz S, Hosters N, Reinartz B U. Fluid-Structure Interaction in the Context of a Scramjet Intake[R]. AIAA 2014-2449. [98] Ma Fh, Li J, Yang V, et al. Thermo Acoustic Flow Instability in a Scramjet Combustor[R]. AIAA 2005-3824. [99] 曹学斌, 张堃元. 超燃冲压发动机隔离段非对称来流下激波串受迫振荡流动研究[J]. 空气动力学学报, 2011, 29(2): 135-141. [100] Bruce P J K. Unsteady Shock Wave Dynamics[J]. Journal of Fluid Mechanics, 2008, 603: 463-473. [101] Su W Y, Ji Y X, Chen Y. Effects of Dynamic Backpressure on Pseudoshock Oscillations in Scramjet Inlet-Isolator[J]. Journal of Propulsion and Power, 2016, 32(2): 516-528. [102] Wang C P, Tian X A, Cheng K M, et al. Numerical Analysis of Pseudo-Shock Flow Diffusion Phenomenon in Variable Cross-Section Ducts[J]. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2008, 222(8): 1109-1121. [103] 王卫星. 非常规隔离段流场特征与气动性能的数值研究[D]. 南京:南京航空航天大学, 2008. [104] Lin P. Geometric Effects on Precombustion Shock Train in Constant Area Isolators [R]. AIAA 93-1838. [105] Tan J, Wu J, Wang Z. Experimental and Numerical Investigations on Flow Fields and Performance of Dual Combustion Ramjet[J]. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2013, 228(6): 920-929. [106] Gnos A V, Watson E C, Seebaugb W R, et al. Investigation of Flow Fields within Large Scale Hypersonic Inlet Models[R]. NASA TN-D7150, 1973. [107] Tan H J, Sun S. Preliminary Study of Shock Train in a Curved Variable-Section Diffuser[J]. Journal of Propulsion and Power, 2015, 24(2): 245-252. [108] 谭慧俊, 郭荣伟. 二维弯曲等截面管道中的激波串特性研究[J]. 航空学报, 2006, 27(6): 1039-1045. [109] Byrne S O’, Doolan M. Analysis of Transient Thermal Choking Processes in a Model Scramjet Engine[J]. Journal of Propulsion and Power, 2000, 16(5): 808-814. [110] Karl S, Schramm J M, Hannemann K. Transient Fluid-Combustion Phenomena in a Model Scramjet[J]. Journal of Fluid Mechanics, 2013, 722(9): 85-120. [111] McDaniel K S, Edwards J R. Three-Dimensional Simulation of Thermal Choking in a Model Scramjet Combustor[R]. AIAA 2001-0382. [112] McDaniel K S, Edwards J R. Simulation of Thermal Choking in a Model Scramjet Combustor[R]. AIAA 99-3411. [113] Frost M A, Gangurde D Y, Paull A, et al. Boundary-Layer Separation Due to Combustion-Induced Pressure Rise in a Supersonic Flow[J]. AIAA Journal, 2009, 47(4): 1050-1053. [114] Laurence S J, Schramm J M, Karl S, et al. An Experimental Investigation of Steady and Unsteady Combustion Phenomena in the HyShot II Combustor[R]. AIAA 2011-2310. [115] Laurence S J, Lieber D, Schramm J M, et al. Incipient Thermal Choking and Stable Shock-Train Formation in the Heat-Release Region of a Scramjet Combustor, Part I: Shock-Tunnel Experiments[J]. Combustion and Flame, 2014, 162(4): 921-931. [116] Steva T B, Goyne C P, Rockwell Jr R D, et al. Comparison of a Direct-Connect and Freejet Dual-Mode Scramjet[J]. Journal of Propulsion and Power, 2015, 31(5): 1380-1392. [117] Waltrup P J, Billig F S. Structure of Shock Waves in Cylindrical Ducts[J]. AIAA Journal, 1973, 11(10): 1404-1408. [118] Sullins G, McLafferty G. Experimental Results of Shock Trains in Rectangular Ducts[R]. AIAA 92-5103. [119] Oka T, Ono D, Miyazota Y. Study of Shock Trains and Pseudo-Shock Waves in Constant Area Ducts[R]. AIAA 2014-0949. [120] Fotia M L, Driscoll J F. Isolator-Combustor Interactions in a Direct-Connect Ramjet-Scramjet Experiment [J]. Journal of Propulsion and Power, 2012, 28(1): 83-95. [121] Fischer C, Olivier H. Experimental Investigation of Wall and Total Temperature Influence on a Shock Train [J]. AIAA Journal, 2014, 52(4): 757-766. [122] Geerts J S, Yu K H. Shock Train/Boundary-Layer Interaction in Rectangular Isolators[J]. AIAA Journal, 2016, 54(11): 3450-3464. [123] Klomparens R L, Driscoll J F, Gamb M. Unsteadiness Characteristics and Pressure Distribution of an Oblique Shock Train[R]. AIAA 2015-1519. [124] Smart M K. Flow Modeling of Pseudoshocks in Backpressured Ducts[J]. AIAA Journal, 2015, 53(12): 3577-3588. [125] Huang H X, Tan H J, Wang J, et al. A Fluidic Control Method of Shock Train in Hypersonic Inlet/Isolator[R]. AIAA 2014-3846. [126] Tan H J, Li C H, Zhang Y. Investigation of a Fluidic Shock Control Method for Hypersonic Inlets[J]. Journal of Propulsion and Power, 2010, 26(5): 1072-1083. [127] Cao X B, Zhang K Y. Experimental Investigation of the Short Isolator with the Ramp under Asymmetric Incoming Flow[R]. AIAA 2010-6554. [128] Valdivia A, Yuceil K B, Wagner J L, et al. Control of Supersonic Inlet-Isolator Unstart Using Active and Passive Vortex Generators[J]. AIAA Journal, 2014, 52(6): 1207-1218. [129] Okuni H, Araki H, Park M K, et al. Experimental Study on Oscillation Control of Pseudo-Shock in Channel Divided by Porous Plate[J]. Transactions of the Japan Society of Mechanical Engineers Part B, 2001, 67(655): 704-711. [130] Weiss A, Olivier H. Behaviour of a Shock Train under the Influence of Boundary-Layer Suction by a Normal Slot[J]. Experiments in Fluids, 2012, 52(2): 273-287. [131] Narayanaswamy V, Raja L L, Clemens N T. Control of Unsteadiness of a Shock Wave/Turbulent Boundary Layer Interaction by Using a Pulsed-Plasma-Jet Actuator [J]. Physics of Fluids, 2012, 24(7). [132] Mohd Y Ali, Farrukh S Alvi. Studies on the Control of Shock Wave-Boundary Layer Interaction Using Steady Microactuators [R]. AIAA 2011-3425. [133] Ogawa H, Babinsky H, P?tzold M, et al. Shock-Wave/Boundary-Layer Interaction Control Using Three-Dimensional Bumps for Transonic Wings[J]. AIAA Journal, 2008, 46(6): 1442-1452. [134] Zhang Y, Tan H, Tian F C, et al. Control of Incident Shock/Boundary-Layer Interaction by a Two-Dimensional Bump [J]. AIAA Journal, 2014, 52(4): 767-776. [135] Hafenrichter E S, Lee Y, Dutton J C, et al. Normal Shock/Boundary-Layer Interaction Control Using Aeroelastic Mesoflaps[J]. Journal of Propulsion and Power, 2003, 19(3): 464-472. [136] Garnier E, Adams N, Sagaut P. Large Eddy Simulation for Compressible Flows[M]. Berlin: Springer, 2013. [137] Boles J A, Choi J I, Edwards J R, et al. Multi-Wall Recycling/Rescaling Method for Inflow Turbulence Generation [R]. AIAA 2010-1099. [138] Morgan B, Duraisamy K, Lele S K. Large-Eddy Simulations of a Normal Shock Train in a Constant-Area Isolator [J]. AIAA Journal, 2014, 52(3): 539-558. [139] Emmert T, Lafon P, Bailly C. Numerical Study of Self-Induced Transonic Flow Oscillations behind a Sudden Duct Enlargement[J]. Physics of Fluids, 2009, 21(10). [140] Koo H, Raman V. Large-Eddy Simulation of a Supersonic Inlet-Isolator[J]. AIAA Journal, 2012, 50(7): 1596-1613. [141] Boles J A, Hagenmaier M A, Hsu K Y. Analysis of Hybrid LES/RANS Simulations of a Back-Pressured Supersonic Isolator[R]. AIAA 2011-5825. [142] Burns R A, Koo H, Raman V, et al. Improved Large-Eddy Simulation Validation Methodology: Application to Supersonic Inlet/Isolator Flow[J]. AIAA Journal, 2015, 53(4): 817-831. [143] Quaatz J F, Giglmaier M, Hickel S, et al. Large-Eddy Simulation of a Pseudo-Shock System in a Laval Nozzle [J]. International Journal of Heat and Fluid Flow, 2014, 49: 108-115. [144] Edwards J R. Large-Eddy /Reynolds Averaged Navier-Stokes Simulation of Shock-Train Development in a Coil-Laser Diffuser[R]. Raleigh: North Carolina State University at Raleigh, 2014. [145] Olson B J, Lele S K. A Mechanism for Unsteady Separation in Over-Expanded Nozzle Flow[J]. Physics of Fluids, 2013, 25(11). [146] Larsson J, Laurence S, Bermejo-Moreno I, et al. Incipient Thermal Choking and Stable Shock-Train Formation in the Heat-Release Region of a Scramjet Combustor, Part II: Large Eddy Simulations[J]. Combustion and Flame, 2015, 162(4): 907-920. [147] Zettervall N, Nordinbates K, Fureby C. Understanding Scramjet Combustion Using LES of the HyShot II Combustor [R]. AIAA 2015-3615. [148] Carroll B F, Dutton J C. Multiple Normal Shock Wave/Turbulent Boundary-Layer Interactions[J]. Journal of Propulsion and Power, 1992, 8(2): 441-448.(编辑:朱立影) * 收稿日期:2017-09-07;修订日期:2018-02-01。基金项目:国家自然科学基金(11532007;11772156;11172136);新世纪优秀人才支持计划(NCET-11-0831);江苏省高校优势学科建设工程资助项目;江苏省普通高校研究生科研创新计划资助项目(KYLX_0303)。作者简介:黄河峡,男,博士,讲师,研究领域为飞行器进气道技术、内流空气动力学等。E-mail: huanghexia@nuaa.edu.cn通讯作者:谭慧俊,男,博士,教授,研究领域为飞行器进气道技术、可压缩流体力学与流动控制方法等。E-mail: thj@263.net |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:北京7208信箱26分箱
邮政编码:100074
E-mail:tjjs@sina.com
访问总数:今日访问: 版权所有 © 《推进技术》编辑部