[1] Starikovskiy A, Aleksandrov N. Plasma-Assisted Ignition and Combustion[J]. Progress in Energy and Combustion Science, 2013, 39(1): 61-110.
[2] Ju Y, Sun W. Plasma Assisted Combustion: Dynamics and Chemistry[J]. Progress in Energy and Combustion Science, 2015, 48: 21-83.
[3] Wie D M V, Risha D J, Suchomel C F. Research Issues Resulting from an Assessment of Technologies for Future Hypersonic Aerospace Systems[R]. AIAA 2004-1357.
[4] 李钢, 李华, 杨凌元, 等. 俄罗斯等离子体点火和辅助燃烧研究进展[J]. 科技导报, 2012, 30(17).
[5] Starikovskii A Y. Plasma Supported Combustion[J]. Proceedings of the Combustion Institute, 2005, 30(2):2405-2417.
[6] Starikovskaia M S, Aleksandrov N L, Kosarev I N, et al. Ignition with Low-Temperature Plasma: Kinetic Mechanism and Experimental Verification[J]. High Energy Chemistry, 2009, 43.
[7] Starikovskaia S M. Plasma Assisted Ignition and Combustion[J]. Journal of Physics D: Applied Physics, 2006, 39: 265-299.
[8] Starikovskaia S M, Starikovskii A Y. Plasma Assisted Ignition and Combustion[M]. London: Wiley, 2010.
[9] Samukawa S, Hori M, Rauf S, et al. The 2012 Plasma Roadmap[J]. Journal of Physics D: Applied Physics, 2012, 45(25).
[10] Starikovskaia S M. Plasma-Assisted Ignition and Combustion: Nanosecond Discharges and Development of Kinetic Mechanisms[J]. Journal of Physics D: Applied Physics, 2014, 47(35).
[11] Adamovich I V, Choi I, Jiang N, et al. Plasma Assisted Ignition and High-Speed Flow Control: Non-Thermal and Thermal Effects[J]. Plasma Sources Science and Technology, 2009, 18(3).
[12] Adamovich I V, Lempert W R. Challenges in Understanding and Predictive Model Development of Plasma-Assisted Combustion[J]. Plasma Physics and Controlled Fusion, 2015, 57(1).
[13] Ju Y, Sun W. Plasma Assisted Combustion: Progress, Challenges, and Opportunities[J]. Combustion and Flame, 2015, 162: 529-532.
[14] Ting S W, Ombrello T, Won S H, et al. Direct Ignition and S-Curve Transition by in Situ Nanosecond Pulsed Discharge in Methane/Oxygen/Helium Counterflow Flame[J]. Proceedings of the Combustion Institute, 2013, 34(1): 847-855.
[15] 李平, 穆海宝, 喻琳, 等. 低温等离子体辅助燃烧的研究进展、关键问题及展望[J]. 高电压技术, 2015, 41(6).
[16] Leonov S B, Savelkin C V, Yarantsev D A. Experiments on Plasma-Assisted Combustion in M=2 Hot Test-Bed PWT-50H [R]. AIAA 2008-1359.
[17] Macheret S O, Shneider M N, Miles. R B. Energy Efficiency of Plasma-Assisted Combustion in Ram/Scramjet Engines [R]. AIAA 2005-5371.
[18] 吴云, 李应红. 等离子体流动控制与点火助燃研究进展[J]. 高电压技术, 2014, 40(7).
[19] Jacobsen L S, Gallimore S D, Schetz J A, et al. Integration of an Aeroramp Injector/Plasma Igniter for Hydrocarbon Scramjets[J]. Journal of Propulsion and Power, 2003, 19(2).
[20] Ardelyan N, Bychkov V, Kosmachevskii K, et al. Modeling of Plasma Jet Interaction with Cross Flows for Propulsion Enhancement [R]. AIAA 2003-1191.
[21] Ardelyan N, Bychkov V, Kosmachevskii K, et al. Plasma Jet Generators with Divergent Channel for Aerodynamic Applications: Flows for Propulsion Enhancement [R]. AIAA 2004-0179.
[22] Minato R, Niioka T. Effect of Hydrogen Jet Position Relative to Plasma Torch on Supersonic Combustion [R]. AIAA 2003-6908.
[23] Minato R, Niioka T, Sugiyama H, et al. Numerical Analysis of Supersonic Combustion by a Plasma Torch[R]. AIAA 2005-3424.
[24] Takita K, Abe N, Masuya G, et al. Ignition Enhancement by Addition of NO and NO2 from a N2/O2 Plasma Torch in a Supersonic Flow [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2489-2496.
[25] Takita K, Ohashi R, Abe N. Suitability of C2-, C3-Hydrocarbon Fuels for Plasma Ignition in High-Speed Flow[J]. Journal of Propulsion and Power, 2009, 25(3).
[26] Takita K, Shishido K, Kurumada K. Ignition in a Supersonic Flow by a Plasma Jet of Mixed Feedstock Including CH4[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2383-2389.
[27] Takita K, Nakane H, Masuya G. Optimization of Double Plasma Jet Torches in a Scramjet Combustor[J]. Proceedings of the Combustion Institute, 2007, 31(2):2513-2520.
[28] Jacobsen L S, Carter C D, Jackson T A, et al. Toward Plasma-Assisted Ignition in Scramjets[R]. AIAA 2002-0871.
[29] Billingsley M C, Sanders D D, O'Brien W F. Improved Plasma Torches for Application in Supersonic Combustion[R]. AIAA 2005-3423.
[30] Bonanos A M, Sanders D D, Schetz J A, et al. Hot-Flow Testing of an Integrated Aero-Ramp-Injector/Plasmaingiter for Scramjets with Hydrogen and Hydrocarbon Fuels[R]. AIAA 2003-6987.
[31] Bonanos A M, Schetz J A, O'Brien W F, et al. Dual-Mode Combustion Experiments with an Integrated Aeroramp-Injector/Plasma-Torch Igniter[J]. Journal of Propulsion and Power, 2008, 24(2).
[32] Gallimore S D, Jacobsen L S, O'Brien W F, et al. Operational Sensitivities of an Integrated Scramjet Ignition/Fuel-Injection System[J]. Journal of Propulsion and Power, 2003, 19(2).
[33] Billingsley M C, O'Brien W F, Schetz J A. Plasma Torch Atomizer-Igniter for Supersonic Combustion of Liquid Hydrocarbon Fuels [R]. AIAA 2006-7970.
[34] Igor B Matveev. Plasma Assisted Combustion, Gasification, and Pollution Control.Volume I.Methods of Plasma Generation for PAC[M]. Eenvor: Outskirts Press, Inc. 2013.
[35] 段立伟, 洪延姬. 等离子体火炬喷射频率对超声速燃烧特性的影响研究[J]. 推进技术, 2015, 36(10):1539-1546. (DUAN Li-wei, HONG Yan-ji. Effects of Plasma Torch Jet Frequency on Supersonic Combustion Characteritics[J]. Journal of Propulsion Technology, 2015, 36(10): 1539-1546.)
[36] 钟文丽, 席文雄, 段立伟, 等. 超声速气流点火助燃用等离子火炬的试验研究[J]. 推进技术, 2015, 36(10): 1528-1532. (ZHONG Wen-li, XI Wen-xiong, DUAN Li-wei, et al. Experimental Investigation on Plasma Torch for Supersonic Flowfield Ignition and Combustion[J]. Journal of Propulsion Technology, 2015, 36(10): 1528-1532.)
[37] Firsov A A, Shurupov M A, Yarantsev D A, et al. Plasma-Assisted Combustion in Supersonic Airflow: Optimization of Electrical Discharge Geometry[R]. AIAA 2014-0988.
[38] Leonov S B, Yarantsev D A. Plasma-Induced Ignition and Plasma-Assisted Combustion in High-Speed Flow[J]. Plasma Sources Science and Technology, 2007, 16(1).
[39] Leonov S B, Isaenkov Y I, Firsov A A, et al. High-Power Filamentary Pulse Discharge in Supersonic Flow[R]. AIAA 2010-259.
[40] Kochetov I V, Napartovich А P, Leonov S B. Multi-Pulse Operation at Plasma-Assistance in High-Speed Combustor [R]. AIAA 2014-0662.
[41] Dutta A, Yin Z, Adamovich I V. Ignition and Flameholding of Premixed and Non-Premixed Ethylene-Air Flows by a Repetitively Pulsed Nanosecond Discharge [R]. AIAA 2009-3592.
[42] Do H, Cappelli M A, Mungal M G. Plasma Assisted Cavity Flame Ignition in Supersonic Flows[J]. Combustion and Flame, 2010, 157(9): 1783-1794.
[43] Do H, Im S, Cappelli M A, et al. Plasma Assisted Flame Ignition of Supersonic Flows over a Flat Wall[J].Combustion and Flame, 2010, 157(12): 2298-2305.
[44] Breden D, Raja L L. Simulations of Thermal Phenomena in Nanosecond Pulsed Plasma Discharges in Supersonic O2-H2 Flows[R]. AIAA 2010-1538.
[45] Khodataev K V. Microwave Discharges and Possible Applications in Aerospace Technologies[J]. Journal of Propulsion and Power, 2008, 24(5).
[46] Michael J B, Dogariu A, Shneider M N, et al. Laser-Initiated, Microwave Driven Ignition in Methane/Air Mixtures [R]. AIAA 2010-650.
[47] Esakov I I, Grachev L P, Khodataev K V, et al. Deeply Subcritical MW Discharge in the Submerged Stream of Propane-Air Mixture[R]. AIAA 2008-1403.
[48] Esakov I I, Grachev L P, Khodataev K V. A System of Deeply Subcritical Microwave Discharges in a Supersonic Air Stream[R]. AIAA 2010-1197.
[49] Shibkov V M. Freely Localized and Surface Microwave Discharges in Air[R]. AIAA 2012-1164.
[50] Shibkov V M, Aleksandrov A F, Chernikov V A, et al. Combined MW-DC Discharge in a High Speed Propane-Butane-Air Stream[R]. AIAA 2006-1216.
[51] Shibkov V M, Aleksandrov A F, Chernikov V A. Microwave and Direct-Current Discharges in High-Speed Flow: Fundamentals and Application to Ignition[J]. Journal of Propulsion and Power, 2009, 25(1).
[52] Shibkov V M, Aleksandrov A F, Chernikov V A, et al. Microwave Discharges: Fundamentals and Applications [R]. AIAA 2007-427.
[53] 陈兆权, 王冬雪, 夏广庆, 等. 微波放电等离子体点火与助燃研究进展 [J]. 固体火箭技术, 2014, 37(1).
[54] Phuoc T X. Laser-Induced Spark Ignition Fundamental and Applications[J]. Optics and Lasers in Engineering, 2006, 44(5): 351-397.
[55] Mohamed H M. Review and Recent Developments of Laser Ignition for Internal Combustion Engines Applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 4849-4875.
[56] Brieschenk S, O'Byrne S, Kleine H. Laser-Induced Plasma Ignition Studies in a Model Scramjet Engine[J]. Combust and Flame, 2013, 160(1): 145-148.
[57] Brieschenk S, O'Byrne S, Kleine H. Ignition Characteristics of Laser-Ionized Fuel Injected into a Hypersonic Crossflow[J]. Combustion and Flame, 2014, 161(4):1015-1025.
[58] Vinogradov V A, Alexandrov A F, Timofeev I B, et al. The Effects of Plasma Formations on Ignition and Combustion[R]. AIAA 2004-1356. * 收稿日期:2016-07-27;修订日期:2016-12-12。基金项目:国家自然科学基金(51606220);激光推进及其应用国家重点实验室开放课题基金联合资助。作者简介:洪延姬,女,博士,研究员,研究领域为激光推进技术,等离子体点火助燃技术,燃烧流场光学诊断技术。 E-mail: hongyanji @vip.163.com(编辑:朱立影)
|