[1] Kodys A D, Choueiri E Y. A Critical Review of the State-of-the-Art in the Performance of Applied-Field Magnetoplasmadynamic Thrusters[R]. AIAA 2005-4247.
[2] Choueiri E Y, Ziemer J K. Quasi-Steady Manetoplasmadynamic Thruster Measured Performance Database[R]. AIAA 98-3472.
[3] Ebersohn F H, Girimaji S S, Staack D, et al. Magnetic Nozzle Plasma Plume: Review of Crucial Physical Phenomena[R]. AIAA 2012-4274.
[4] McGuire M L. Borowski S K, Mason L M. High Power MPD Nuclear Electric Propulsion (NEP) for Artificial Gravity HOPE Missions to Callisto[R]. NAS/TM 2003-212349.
[5] Hack K J, George J A, Dudzinski L A. Nuclear Electric Propulsion Mission Performance for Fast Piloted Mars Missions[R]. AlAA 91-3488.
[6] Gilland J H, Myers R M, Patterson M J. Multimegawatt Electric Propulsion System Design Considerations[R]. AlAA 90-2552.
[7] McGuire M L, Martini M C, Packard T W, et al. Use of High-Power Brayton Nuclear Electric Propulsion (NEP) for a 2033 Mars Round-Trip Mission[R]. NASA/TM 2006-214106.
[8] Ducati A C, Giannini G M, Muehlberger E. Experimental Results in High-Specific Impulse Thermo-ionic Acceleration[J]. AIAA Journal, 1964, 2(8): 1452–1454.
[9] Nerheim N M, Kelly A J. A Critical Review of the State-of-the-Art of the MPD Thruster[R]. AIAA 67-680.
[10] Myers R M, Mantenieks M A, LaPointe M R. MPD Thruster Technology[R]. AIAA 91-3568.
[11] Esker D W, Kroutil J C, Checkley R J. Radiation Cooled MPD Arc Thruster[R]. Technical Report Contract NAS3-11518, 1969.
[12] Tikhonov V B, Semenikhin S A, Brophy J R. Performance of 130kW MPD Thruster with an External Magnetic Field and Li as a Propellant[C]. Cleveland: 25th International Electric Propulsion Conference, 1997.
[13] Lev D, Choueiri, E Y. Scaling?of?Efficiency?with?Applied?Magnetic Field in Mangnetoplasmadynamic Thrusters[R]. AIAA 2010-7024.
[14] Albertoni R, Rossetti P, Paganucci F, et al. Experimental Study of a 100kW Class Applied-Field MPD Thruster[C]. Wiesbaden: 32th International Electric Propulsion Conference, 2011.
[15] Myers R M. Geometric Scaling of Applied-Field Magnetoplasmadynamic Thrusters[J]. Journal of Propulsion and Power, 1995, 11( 2): 343-350.
[16] Myers R M. Applied-Field MPD Thruster Geometry Effects[R]. AIAA 1991-2342.
[17] Boxberger A, JüSTEL P, Herdrich G. Performance of 100kW Steady State Applied-Field MPD Thruster[C]. Matsuyama: The 31st International Symposium on Space Technology and Science, 2017.
[18] Herdrich G, Boxberger A, Petkow D, et al. Advanced Scaling Model for Simplified Thrust and Power Scaling of an Applied-Field Magnetoplasmadynamic Thruster[R]. AIAA 2010-6531.
[19] LaPointe M, Strzempkowski E, Pencil E. High?Power?MPD?Thruster?Performance?Measurements[R]. AIAA 2004-3467.
[20] Choueiri E Y, Ziemer J K. Quasi-Steady Manetoplasmadynamic Thruster Measured Performance Database[R]. AIAA 98-3472.
[21] Tahara H, Kagaya Y, Yoshikawa T. Performance and Acceleration Process of Quasisteady Magnetoplasmadynamic Arcjets with Applied Magnetic Fields[J]. Journal of Propulsion and Power, 1997, 13(5): 651-658.
[22] Tahara H, Kagaya Y, Yoshikawa T. Effects of Applied Magnetic Fields on Performance of a Quasisteady Magnetoplasmadynamic Arcjet[J]. Journal of Propulsion and Power, 1995, 11(2): 337–342.
[23] Sasoh A, Arakawa Y. Electromagnetic Effects in an Applied-Field Magnetoplasmadynamic Thruster[J]. Journal of Propulsion and Power, 1992, 8(1): 98–102.
[24] Sasoh A, Arakawa Y. Thrust Formula for an Applied-Field MPD Thruster Derived from Energy Conservation Equation[J]. Journal of Propulsion and Power, 1995, 11(2): 351–356.
[25] Cheng J, Tang H, York T M. Energy Conversion and Transfer for Plasmas in a Magnetic Expansion Configuration[J]. Physics of Plasmas, 2014, 21(6).
[26] Coogan W J, Choueiri E Y. A Critical Review of Thrust Models for Applied-Field Magnetoplasmadynamic Thrusters[R]. AIAA 2017-4723.
[27] Robert G J. Physics of Electric Propulsion[M]. New York: McGraw-Hill Book Company, 1968.
[28] Choueiri E Y. The Scaling of Thrust in Self-Field MPD Thrusters[J]. Journal of Propulsion and Power, 1998, 14(5): 744-753.
[29] Fradkin D B, Blackstock A W, Roehling D J, et al. Experiments Using a 25kW Hollow Cathode Lithium Vapor MPD Arcjet[J]. AIAA Journal, 1970, 8(5): 886-894.
[30] Myers R M. Scaling of 100kW Class Applied-Field MPD Thrusters[R]. AIAA 92-3462.
[31] Tikhonov V B, Semenikhin S A, Alexandrov V A, et al.Research of Plasma Acceleration Processes in Self-Field and Applied Magnetic Field Thrusters[C]. Seattle, WA: 25th International Electric Propulsion Conference, 1993.
[32] Tikhonov V B, Semenikhin S A, Brophy J R, et al. The Experimental Performance of the 100kW Li Thruster with External Magnetic Field[C]. Moscow: 24th International Electric Propulsion Conference, 1995.
[33] Boxberger A, Delgado F, Malacci L, et al. Overview of Experimental Research on Applied-Field Magnetoplasmadynamic Thrusters at IRS[C]. Dresden: 5th Russian-German Conference on Electric Propulsion and Their Application, 2013.
[34] Mikellides P G, Turchi P J. Applied-Field Magnetoplasmadynamic Thrusters, Part 2: Analytic Expressions for Thrust and Voltage[J]. Journal of Propulsion and Power, 2000, 16(5): 894–901.
[35] Mikellides P G, Turchi P J, Roderick, N F. Applied-Field?Magnetoplasmadynamic Thrusters, Part 1: Numerical Simulations Using the MACH2 Code[J]. ?Journal of?Propulsion and Power, 2000, 16(5): 887-893.
[36] Coletti M. A Thrust Formula for an MPD Thruster with Applied-Magnetic Field[J]. Acta Astronautica, 2012, 81(2): 667–674.
[37] Kimura?I, Arakawa Y. Effect of Applied Magnetic Fields on Physical Processes in an MPD Arcjet[J].AIAA Journal, 1977, 15(?5): 721-724.
[38] Paganucci F, Rossetti P, Andrenucci M, et al. Performance of an Applied Field MPD Thruster[C]. Pasadena, CA: 27th International Electric Propulsion Conference, 2001.
[39] Tang H, Cheng J, Liu C, et al. Study of Applied Magnetic Field Magnetoplasmadynamic Thrusters with Particle-in-Cell and Monte Carlo Collision. II. Investigation of Acceleration Mechanisms[J]. Physics of Plasmas, 19, 2012, 19(1).
[40] Barnett J W, Jahn R G. Onset Phenomena in MPD Thrusters[R]. AIAA 85-2038.
[41] Uribarri?L, Choueiri E Y. Effects of Power Supply Resonances in Onset Studies of Quasi-Steady MPD Thrusters[R]. AIAA 2007-5295
[42] Winter M, Auweter-Kurtz M, Haag D, et al. Investigation of Nozzle Geometry Effects on the Onset of Plasma Instabilities in High Power Steady State MPD Thrusters[R]. AIAA 2006-5016.
[43] Lawless J L, Subramaniam V, Theory?of?Onset?in?Magnetoplasmadynamic?Thrusters[J]. Journal of Propulsion and Power, 1987, 3(2): 121-127.
[44] Gallimore A D, Myers R M, Kelly A J, et al. Anode Power Deposition in an Applied-Field Segmented Anode MPD Thruster[J]. ?Journal of Propulsion and Power, 1994, 10(2): 262-268.
[45] Myers?R, Soulas G. Anode Power Deposition in Applied-Field MPD Thrusters[R]. AIAA 92-3463.
[46] Niewood E H, Martinez-Sanchez M. An Explanation for Anode Voltage Drops in MPD Thrusters[R]. AIAA 93-2104.
[47] Uematsu K, Morimoto S, Kuriki K. MPD Thruster Performance with Various Propellants[J]. Journal of Spacecraft and Rockets, 2012, 22(4): 412-416.
[48] Polk J, Pivirotto T. Alkali Metal Propellants for MPD Thrusters[R]. AIAA 91-3572.
[49] Myers R M. Applied-Field MPD Thruster Performance with Hydrogen and Argon Propellants[J]. Journal of Propulsion and Power, 2012, 9(5): 781-784.
[50] Lapointe M R. Numerical Simulation of Cylindrical, Self-Field MPD Thrusters with Multiple Propellants[J]. NASA-CR-194458, 1994.
[51] Paganucci F, Andrenucci M. MPD Thruster Performance Using Pure Gases and Mixtures as Propellant[R].AIAA 95-2675.
[52] Li M, Liu H, Ning Z, et al. 2-D Extended Fluid Model of Applied-Field Magnetoplasmadynamic Thruster with Solid and Hollow Cathodes[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 4034-4042.
[53] Kunii Y, Shimizu Y, Kuriki K. Current Distribution in a Quasisteady MPD Arcjet with Various Anode Geometries[J]. AIAA Journal, 1984, 22(6): 750-751.
[54] Andrenucci M, Paganucci F, Grazzina P, et al. Scale and Geometric Effects on the Performance of MPD Thrusters[R]. AIAA 92-3159.
[55] Nakata D, Toki K, Funaki I, et al. Experimental Study for the Optimal Electrode Geometry in an MPD Thruster[R]. AIAA 2007-589.
[56] Tahara H, Kagaya Y. Performance and Plasma Characteristics of a Cusp and Divergent-Nozzle Applied-Magnetic-Field MPD Thruster[C]. Florence: 30th International Electric Propulsion Conference, 2007.
[57] Myers R, Mantenieks M, Sovey J. Geometric?Effects?in?Applied-Field?MPD?Thrusters[R]. AIAA 1990-2669.
[58] Li Z, Tang H, Wang Y, et al. Increasing the Effective Voltage in Applied-Field MPD Thrusters[J]. Journal of Physics D: Applied Physics, 2018, 51(8).
[59] Schrade H O, Auweter-Kurtz M, Kurtz H L. Cathode Erosion Studies on MPD Thrusters[J]. ?AIAA Journal, 1987, 25(8): 1105-1112.
[60] Polk J E. Operation of Thoriated Tungsten Cathodes[J]. AIP Conference Proceedings, 1993, 271(3).
[61] Erreira C M, Delcroix J L. Theory of the Hollow Cathode Arc[J]. Journal of Applied Physics, 1978, 49(4):2380-2395.
[62] Rowe R, vonJaskowsky W F, Clark K, et al. Erosion Measurements of Quasi-Steady MPD Thrusters[R]. AIAA 81-0687.
[63] Sary G, Garrigues L, Boeuf J P. Hollow Cathode Modeling: I. A Coupled Plasma Thermal Two-Dimensional Model[J]. Plasma Sources Science Technology, 2017, 26(5).(编辑:朱立影) 收稿日期:2018-01-01;修订日期:2018-04-28。基金项目:国家自然科学基金(11872093);国防基础科研计划(JCKY2017601C)。通讯作者:汤海滨,男,博士,教授,研究领域为等离子体电推进。E-mail:thb@buaa.edu.cn
|