推进技术 ›› 2018, Vol. 39 ›› Issue (11): 2401-2414.

• 综 述 •    下一篇

磁等离子体动力推力器回顾和认识

汤海滨1,王一白2,魏延明3   

  1. 北京航空航天大学 空间与环境学院,北京 100191,北京航空航天大学 宇航学院,北京 100191,北京控制工程研究所,北京 100094
  • 发布日期:2021-08-15
  • 基金资助:
    国家自然科学基金(11872093);国防基础科研计划(JCKY2017601C)。

Review and Understanding on Magnetoplasmadynamic Thrusters Technology

  1. School of Space and Environment,Beihang University,Beijing 100191,China,School of Astronautics,Beihang University,Beijing 100191,China and Beijing Institute of Control Engineering,Beijing 100094,China
  • Published:2021-08-15

摘要: 磁等离子体动力推力器因其高比冲、大推力密度及与空间核电功率匹配性好等特点,成为未来大速度增量深空任务的优选方案。回顾了磁等离子体动力推力器技术发展历史,总结了推力产生机制和推力模型,分析了推进剂选择、工作不稳定性、功率沉降、电极结构和阴极烧蚀等关键问题对推力器性能的影响,针对磁等离子体动力推力器技术和未来应用,给出了相关认识和建议。

关键词: 磁等离子体推力器;推力机制;推进剂;Onset;功率沉降;电极结构;阴极烧蚀

Abstract: Due to its high specific impulse,high thrust density and intrinsic capability with on-board nuclear power,the magnetoplasmadynamic thruster (MPDT) has become an attractive option for large delta-v deep space missions in the future. The development history of MPDT technology is reviewed,the thrust generation mechanism and thrust models are summarized. The effects of propellant,operation instabilities,power deposition,electrode structure and cathode erosion etc. on the thruster performance are analyzed. In view of MPDTs technology and future application,some relative knowledge and suggestions are given.

Key words: Magnetoplasmadynamic thruster;Thrust mechanism;Propellant;Onset;Power deposition;Electrode structure;Cathode erosion