[1] Rycroft M, Crosby N. Smaller Satellites: Bigger Business: Concepts, Applications and Markets for Micro/Nanosatellites in a New Information World[M]. Berlin: Springer Science & Business Media, 2013.
[2] 林来兴. 国外微小卫星在空间攻防中的应用研究[J]. 装备学院学报, 2006, 17(6): 47-49.
[3] 尤政. 空间微系统与微纳卫星[M]. 北京:国防工业出版社, 2013.
[4] Mueller J. Thruster Options for Microspacecraft: a Review and Evaluation of Existing Hardware and Emerging Technologies[R]. AIAA 97-3058.
[5] 林来兴. 现代小卫星的微推进系统[J]. 航天器工程, 2010, 19(6): 13-20.
[6] Kantrowitz A. Propulsion to Orbit by Ground-Based Lasers[J]. Astronautics and Aeronautics, 1972, 10(5): 74-76.
[7] Phipps C, Birkan M, Bohn W, et al. Review: Laser-Ablation Propulsion[J]. Journal of Propulsion and Power, 2010, 26(4): 609-637.
[8] 洪延姬, 李修乾, 窦志国. 发展中的激光推进[J]. 推进技术, 2009, 30(4): 490-594. (HONG Yan-ji, LI Xiu-qian, DOU Zhi-guo. Laser Propulsion in Development[J]. Journal of Propulsion Technology, 2009, 30(4): 490-594.)
[9] 郑志远, 高华, 樊振军, 等. 激光等离子体推进技术研究进展[J]. 科技导报, 2012, 30(28): 70-74.
[10] Phipps C R. Efficient Space Propulsion Engines Based on Laser Ablation[C]. Los Alamos: Proceedings of the Los Alamos Technology Exchange Workshop, 1993.
[11] Phipps C R. Modification of Earth-Satellite Orbits Using Medium-Energy Pulsed Lasers[C]. Crete: Proceedings of the Ninth International Symposium on Gas Flow and Chemical Lasers, 1993.
[12] Phipps C R, Luke J, Marquis J. Diode Laser-Based Microthrusters: a New Departure in High Isp, Long-Life Engines[R]. AIAA 2000-3477.
[13] 郑志远. 激光等离子体推进技术[M]. 北京: 科学出版社, 2015.
[14] Phipps C R, Turner T P, Harrison R F, et al. Impulse Coupling to Targets in Vacuum by KrF, HF, and CO2 Single-Pulse Lasers[J]. Journal of Applied Physics, 1988, 64(3): 1083-1096.
[15] Phipps C R, Harrison R F, Shimada T, et al. Enhanced Vacuum Laser-Impulse Coupling by Volume Absorption at Infrared Wavelengths[J]. Laser and Particle Beams, 1990, 8(1-2): 281-298.
[16] Phipps C R, Luke J R, McDuff G G, et al. Laser Ablation Powered Mini-Thruster[C]. Taos: Proceedings of SPIE-International Society for Optics and Photonics, 2002.
[17] Phipps C R, Luke J R, McDuff G G, et al. A Laser-Ablation-Based Micro-Rocket[R]. AIAA 2002-2152.
[18] Luke J R, Phipps C R, McDuff G G. Laser Plasma Thruster Continuous Thrust Experiment[C]. Taos: Proceedings of SPIE-International Society for Optics and Photonics, 2002.
[19] Phipps C, Luke J. Diode Laser-Driven Microthrusters: a New Departure for Micropropulsion[J]. AIAA Journal, 2002, 40(2): 310-318.
[20] Luke J R, Phipps C R, McDuff G G. Laser Plasma Thruster[J]. Applied Physics A: Materials Science & Processing, 2003, 77(2): 343-348.
[21] Ali A N, Son S F, Hiskey M A, et al. Novel High Nitrogen Propellant Use in Solid Fuel Micropropulsion[J]. Journal of Propulsion and Power, 2004, 20(1): 120-126.
[22] Lippert T, David C, Hauer M, et al. Novel Applications for Laser Ablation of Photopolymers[J]. Applied Surface Science, 2002, 186(1): 14-23.
[23] Urech L, Hauer M, Lippert T, et al. Designed Polymers for Laser-Based Microthrusters: Correlation of Thrust with Material, Plasma, and Shockwave Properties[C]. Bellingham: High-Power Laser Ablation V, Proceedings of SPIE, 2004.
[24] Urecha L, Lippert T, Phipps C R, et al. Polymers as Fuel for Laser Plasma Thrusters: a Correlation of Thrust with Material and Plasma Properties by Mass Spectrometry[C]. Taos: Proceedings of SPIE-International Society for Optics and Photonics, 2006.
[25] Phipps C R, Luke J R, Helgeson W, et al. Performance Test Results for the Laser-Powered Microthruster[C]. Nara: Fourth International Symposium on Beamed Energy Propulsion, 2006.
[26] Phipps C R, Luke J R, McDuff G G. A Diode-Laser-Driven Microthruster[C]. Pasadena: 24th International Electric Propulsion Conference, 2001.
[27] Koizumi H, Inoue T, Kojima K, et al. Microthruster Experiment Using a Diode Laser[R]. AIAA 2003-4568.
[28] Nakano M, Koizumi H, Inoue T, et al. Experimental Investigation of a Chemically-Augmented, Diode Laser Thruster for Microspacecraft[R]. AIAA 2004-3799.
[29] Koizumi H, Inoue T, Arakawa Y, et al. Dual Propulsive Mode Microthruster Using a Diode Laser[J]. Journal of Propulsion and Power, 2005, 21(6): 1133-1136.
[30] Koizumi H, Inoue T, Komurasaki K, et al. Development of a Microthruster Using Laser Ignition of Pyrotechnic Pellets[R]. AIAA 2006-4494.
[31] Nakano M, Koizumi H, Watanabe M, et al. A Laser Ignition Microthruster for Microspacecraft Propulsion[R]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2009.
[32] Koizumi H, Masuda Y, Hayashi T, et al. Performance Improvement of a Laser-Ignition Micro Solid Rocket by Controlling the Combustion Wave Front[R]. AIAA 2012-3759.
[33] Nakano M, Koizumi H, Watanabe M, et al. Laser Ignition Microthruster Experiments on KKS-1[J]. Aerospace Technology Japan, 2010, 8: 7-11.
[34] Koizumi H, Asakawa J, Nakagawa Y, et al. Micropropulsion Systems Enabling Full Active Debris Removal by a Small Satellite ADRAS-1[C]. Logan: 30th Annual AIAA/USU Conference on Small Satellites, 2016.
[35] 蔡建. 激光微推进的原理和应用研究[D]. 合肥: 中国科学技术大学, 2007.
[36] 郑航, 胡晓军, 郭海, 等. 激光微推进器用于微小卫星的姿轨控仿真[J]. 推进技术, 2007, 28(5): 467-470. (ZHENG Hang, HU Xiao-jun, GUO Hai, et al. Attitude and Orbit Control Simulations of Laser Micro-Thruster to Micro-Satelite[J]. Journal of Propulsion Technology, 2007, 28(5): 467-470.)
[37] Long Jiao, Jian Cai, Honghao Ma, et al. Application of Energetic Materials in Laser Ablative Micropropulsion[J]. International Journal of Energetic Materials and Chemical Propulsion, 2015, 14(1): 57-69.
[38] 王晓勇. 基于GAP含能靶带的激光烧蚀微推进技术研究[D]. 南京:南京理工大学, 2015.
[39] 王晓勇, 吴立志, 郭宁, 等. 激光脉宽对含碳粉GAP 推进剂推进性能影响初步研究[J]. 推进技术, 2016, 37(4): 788-792. (WANG Xiao-yong, WU Li-zhi, GUO Ning, et al. Preliminary Study for Effects of Laser Pulse Width on Propulsion Performance of GAP Propellant Doped with Carbon[J]. Journal of Propulsion Technology, 2016, 37(4): 788-792.)
[40] 蔡建, 贾少霞, 杨景华, 等. 激光微推进技术[C]. 哈尔滨:第十二届中国电推进技术学术研讨会, 2016.
[41] 刘昭然, 洪延姬, 叶继飞, 等. 靶材厚度对透射式激光烧蚀性能的影响[J]. 推进技术, 2017, 38(7): 1669-1674. (LIU Zhao-ran, HONG Yan-ji, YE Ji-fei, et al. Effects of Propellant Thickness on Laser Ablation Performance in Transmission Mode[J]. Journal of Propulsion Technology, 2017, 38(7): 1669-1674.)
[42] 叶继飞, 洪延姬, 李南雷, 等. 碟片式激光烧蚀微推力器[C]. 北京:第十三届中国电推进技术学术研讨会, 2017.
[43] 成玉国. 脉冲激光烧蚀推进冲量发生机理研究[D]. 长沙:国防科技大学, 2011.
[44] Phipps C R. Advantages of Using ps-Pulses in the ORION Space Debris Clearing System[C]. McLean: Proceedings International Conference on Lasers, 1998.
[45] Gonzales D A, Baker R P. Micropropulsion Using a Nd: YAG Microchip Laser[C]. Taos: Proceedings of SPIE-International Society for Optics and Photonics, 2002.
[46] Phipps C R, Luke J R, Helgeson W D. 3ks Specific Impulse with a ns-Pulse Laser Microthruster[C]. Princeton: International Electric Propulsion Conference, 2005.
[47] Gregg D W, Thomas S J. Kinetic Energies of Ions Produced by Laser Giant Pulses[J]. Journal of Applied Physics, 1966, 37(12): 4313-4316.
[48] Phipps C R, Michaelis M M. LISP: Laser Impulse Space Propulsion[J]. Laser and Particle Beams, 1994, 12(1): 23-54.
[49] Phipps C R, Luke J R, Helgeson W. Liquid-Fueled, Laser-Powered, N-Class Thrust Space Engine with Variable Specific Impulse[C]. Kailua: Firth International Symposium on Beamed Energy Propulsion, 2008.
[50] Kawakami M, Lin W W, Igari A, et al. Plasma Behaviors in a Laser-Assisted Plasma Thruster[R]. AIAA 2003-5028.
[51] Horisawa H, Kawakami M, Igari A, et al. Discharge Characteristics of Laser-Electric Hybrid Thrusters[R]. AIAA 2004-3937.
[52] Ayabe T, Horisawa H, Funaki I, et al. Rectangular Laser-Electromagnetic Hybrid Pulsed Plasma Thruster[C].Florence: The 30th International Electric Propulsion Conference, 2007.
[53] Horisawa H, Kishida Y, Funaki I. High-Isp Mode of Pulsed Laser-Electromagnetic Hybrid Accelerator for Space Propulsion Applications[C]. Santa Fe: International Symposium on High Power Laser Ablation, 2010.
[54] Horisawa H, Mashima Y, Yamada O, et al. High Isp Mechanism of Rectangular Laser-Electromagnetic Hybrid Acceleration Thruster[C]. Wiesbaden: The 32nd International Electric Propulsion Conference, 2011.
[55] Kobayashi H, Horisawa H, Funaki I. A Plasma Behavior Analysis of a Laser-Assisted Pulsed Plasma Thruster[R]. AIAA 2012-4281.
[56] Oigawa Y, Horisawa H, Funaki I. Improvement of Laser Electromagnetic Hybrid Thruster[C]. Washington: The 33th International Electric Propulsion Conference, 2013.
[57] Hosokawa H, Akashi N, Oigawa Y, et al. Short Pulse Operation of a Laser-Assisted Pulsed Plasma Thruster[R]. AIAA 2014-3536.
[58] Akashi N, Oigawa Y, Hosokawa H, et al. Plasma Acceleration Characteristic of a Rectangular Laser-Electromagnetic Hybrid Thruster[R]. AIAA 2014-3538.
[59] Kato K, Akashi N, Oigawa Y, er al. Magnetic Field Distributions of a Laser Assisted Pulsed Plasma Thruster[C]. Hyogo-Kobe: Joint Conference of 30th ISTS, 2015.
[60] Karima M, Horisawa H, Oigawa Y. Characteristics of High-Repetition Rate Operation of a Laser-Assisted Pulsed Plasma Thruster[C]. Washington: The 33th International Electric Propulsion Conference, 2013.
[61] Matsubara K, Hosokawa H, Akashi N, et al. A Short-Pulse Laser-Assisted Pulsed Plasma Thruster[R]. AIAA 2015-4183.
[62] 张代贤. 激光支持的脉冲等离子体推力器理论、实验与仿真研究[D]. 长沙:国防科学技术大学, 2014.
[63] Horisawa H, Sasaki K, Igari A, et al. Electrostatic and Electromagnetic Acceleration in a Laser-Electric Hybrid Thruster[C]. Princeton: The 29th International Electric Propulsion Conference, 2005.
[64] Sasaki Y, Horisawa H, Funaki I, et al. Thrust Performance of Electromagnetic Acceleration Mode for Laser-Electric Hybrid Thrusters[C]. Florence: The 30th International Electric Propulsion Conference, 2007.
[65] Horisawa H, Sasaki Y, Funaki I, et al. Electromagnetic Acceleration Characteristics of a Laser-Electric Hybrid Thruster[R]. AIAA 2008-4818.
[66] Horisawa H, Igari A, Uchida Y, et al. Electrostatic Acceleration Mode of Laser-Electric Hybrid Thrusters[R]. AIAA 2005-3697.
[67] Ono T, Uchida Y, Horisawa H, et al. Laser-Electrostatic Acceleration Characteristics of a Laser-Electric Hybrid Thruster[R]. AIAA 2008-5008.
[68] Sakai T, Osamura A, Horisawa H. Development of a Laser-Electrostatic Hybrid Acceleration Thruster[R]. AIAA 2014-3692.
[69] Osamura A, Edamura R, Horisawa H. Development of an Alternating Electric Field Accelerator for Laser-Ablation Plasma Acceleration[C]. Hyogo-Kobe: Joint Conference of 30th ISTS, 34th IEPC and 6th NSAT, 2015.
[70] Edamura R, Osamura A, Hara Kenta, et al. A Laser-Electrostatic Hybrid Thruster[C]. Hyogo-Kobe: Joint Conference of 30th ISTS, 2015.
[71] Zaidi S H, Smith T W, Murray R, et al. Magnetically Guided Laser Ablation for High Specific Impulse Thrusters[R]. AIAA 2005-365.
[72] Rubin A S, Zaidi S H, Miles R B. Thrust Vectoring of Laser-Ablated Aluminum Plasma Using Permanent Magnets[R]. AIAA 2012-0197.
[73] Rubin A S, Zaidi S H, Miles R B. Thrust Vectoring of a Laser-Ablated Plasma Using Permanent Magnets and Various Materials[R]. AIAA 2013-1079.
[74] Kakami A, Masaki S, Horisawa H, et al. Solid Propellant Microthruster Using Laser-Assisted Combustion[R]. AIAA 2004-3797.
[75] Kakami A, Hiyamzu R, Shuzenji K, et al. Laser-Assisted Combustion of Solid Propellants[R]. AIAA 2007-5783.
[76] Kakami A, Hiyamizu R, Shuzenji K, et al. Laser-Assisted Combustion of Solid Propellant at Low Pressures[J]. Journal of Propulsion and Power, 2008, 24(6): 1355-1360.
[77] Kakami A, Takai T, Tachibana T. Solid Propellant Combustion under Laser Heating[R]. AIAA 2008-4788.
[78] Kakami A, Terashita S, Tachibana T. Application of Laser-Assisted Combustion to Solid Propellant for Space Propulsion[R]. AIAA 2010-6584.
[79] Kakami A, Morita A, Taketoshi H, et al. Laser Assisted Combustion of Solid Propellant for a 100mN Class Variable Thrust Rocket Motor[R]. AIAA 2012-4042.
[80] Kakami A, Taketoshi H, Shimoda M, et al. Throttleable Solid Propellant Microthruster Using Laser-Assisted Combustion[R]. AIAA 2013-4078.
[81] Isakari S, Asakura T, Haraguchi D, et al. Performance Evaluation and Thermography of Solid-Propellant Microthrusters with Laser-Based Throttling[J]. Aerospace Science and Technology, 2017, 71: 99-108.
[82] Shen R, Wu L, Qin Z, et al. New Concept of Laser-Augmented Chemical Propulsion[M]. Switzerland: Springer International Publishing, 2017: 689-696.
[83] 何振, 吴建军, 张宇, 等. 激光支持的磁等离子体推力器[P]. 中国专利:201610273464.9, 2016-04-28. 收稿日期:2018-01-22;修订日期:2018-03-07。基金项目:国家自然科学基金(11772354)。作者简介:谭胜,男,博士生,研究领域为束能与电磁推进技术。E-mail: tsh201201401007@163.com通讯作者:吴建军,男,博士,教授,研究领域为束能与电磁推进技术和推进系统动力学、故障诊断与健康监控技术。 E-mail: jjwu@nudt.edu.cn(编辑:史亚红)
|