[1] Saunders J D, Stueber T J, Suder K L, et al. Testing of the NASA Hypersonics Project’s Combined Cycle Engine Large Scale Inlet Mode Transition Experiment (CCE LIMX)[R]. NASA/TM 2012-217217.
[2] Foster L E, Saunders J D, Sanders B W, et al. Highlights from a Mach 4 Experimental Demonstration of Inlet Mode Transition for Turbine-Based Combined Cycle Hypersonic Propulsion[R]. AIAA 2012-4143.
[3] Steelant J, Varvill R, Defoort S, et al. Achievements Obtained for Sustained Hypersonic Flight within the LAPCAT-Ⅱ Project[R]. AIAA 2015-3677.
[4] Bulman M J, Siebenhaar A. Combined Cycle Propulsion: Aerojet Innovations for Practical Hypersonic Vehicles[R]. AIAA 2011-2397.
[5] Miyagi H, Kimura H, Kishi K, et al. Combined Cycle Engine in Japanese HYPR Program[R]. AIAA 98-3278.
[6] Lederer R, Schwab R, Voss N. Hypersonic Airbreathing Propulsion Activities for S?NGER[R]. AIAA 91-5040.
[7] Snyder C A, Maldonado J J. The Design and Performance Estimates for the Propulsion Module for the Booster of a TSTO Vehicle [R]. AIAA 91-3136.
[8] Lynn E S, Daric W E, Rich L D, et al. Turbine Based Combination Cycle (TBCC) Propulsion Subsystem Integration[R]. AIAA 2004-3649.
[9] Walker S, Tang M, Mamplata C. TBCC Propulsion for a Mach 6 Hypersonic Airplane[R]. AIAA 2009-7238.
[10] Miyagi H, Miyagawa H, Monji, et al. Combined Cycle Engine Research in Japanese HYPR Project[R]. AIAA 95-2751.
[11] 黄红超, 王占学, 蔡元虎. 基于推力连续准则的小型涡轮冲压组合发动机模态转换过程分析[J]. 航空动力学报, 2010, 24(12): 2756-2762.
[12] 黄红超, 王占学, 刘增文. 基于流量连续准则的小型涡轮冲压组合发动机模态转换过程分析[J]. 西北工业大学学报, 2010, 28(2): 234-239.
[13] Chen M, Tang H L, Zhu Z L. Goal Programming for Stable Mode Transition in Tandem Turbo-Ramjet Engines[J]. Chinese Journal of Aeronautics, 2009, 22(5): 486-492.
[14] 聂聆聪, 李岩, 戴冬红, 等. 涡轮冲压组合发动机模态转换多变量控制研究[J]. 推进技术, 2017, 38(5): 968-974. (NIE Ling-cong, LI Yan, DAI Dong-hong, et al. Study on Mode Transition Multi-Variable Control for Turbine-Based Combined Cycle Engine[J]. Journal of Propulsion Technology, 2017, 38(5): 968-974.)
[15] Daniel A H, Eric J G. Integrated Turbine-Based Combined Cycle Dynamic Simulation Model[C]. Arlington, VA: 58th Joint Army-Navy-NASA-Air-Farce (JANNAF) Interagency Propulsion, 2011.
[16] 张明阳, 王占学, 刘增文, 等. Ma4一级内并联式TBCC发动机模态转换性能分析[J]. 推进技术, 2017, 38(2): 315-322. (ZHANG Ming-yang, WANG Zhan-xue, LIU Zeng-wen, et al. Analysis of Mode Transition Performance a Mach 4 Over-Under TBCC Engine[J]. Journal of Propulsion Technology, 2017, 38(2): 315-322.)
[17] Bradford J E, Charania A, Wallace J, et al. Quicksat: A Two-Stage to Orbit Reusable Launch Vehicle Utilizing Air-Breathing Propulsion for Responsive Space Access[R]. AIAA 2004-5950.
[18] Eklund D R, Boudreau A H, Bradford J E. A Turbine-Based Combined Cycle Solution for Responsive Space Access[R]. AIAA 2005-4186.
[19] Bartolotta P A, McNelis N B, Shafer D G. High Speed Turbines: Development of a Turbine Accelerator (RTA) for Space Access[R]. AIAA 2003-6943.
[20] Sosounov V A, Tskhovrebov M M, Solonin V I, et al. The Study of Experimental Turboramjets[R]. AIAA 92-3720.
[21] Kurzke J. How to Get Component Maps for Aircraft Gas Turbine Performance Calculations[R]. ASME 96-GT-164.
[22] Peter J O. Mode Transition Design Considerations for an Airbreathing Combined-Cycle Hypersonic Vehicle[R]. AIAA 2008-2621.
[23] 陈玉春, 刘小勇, 黄兴, 等. 基于集总参数方程的超燃冲压发动机性能计算模型[J]. 推进技术, 2012, 33(6): 840-846. (CHEN Yu-chun, LIU Xiao-yong, HUANG Xing, et al. A Model Based on Lumped Parameter Method for Scramjet Performance Computation[J]. Journal of Propulsion Technology, 2012, 33(6): 840-846.)(编辑:朱立影) 收稿日期:2017-09-20;修订日期:2017-11-24。通讯作者:张明阳,男,博士生,研究领域为航空发动机总体性能仿真。E-mail: my_npu@163.com
|