[1] Mongia H C. Recent Progress in Comprehensive Modeling of Gas Turbine Combustion[R]. AIAA 2008-1445.
[2] Bahr D W. Technology for the Design of High Temperature Rise Combustors[J]. Journal of Propulsion and Power, 1987, 3(2): 179-186.
[3] Mongia H C. Engineering Aspects of Complex Gas Turbine Combustion Mixers, Part I: High ΔT[R]. AIAA 2011-107.
[4] Makida M, Kurosawa Y, Yamada H, et al. Emission Characteristics Through Rich-Lean Combustor Development Process for Small Aircraft Engine[J]. Journal of Propulsion and Power, 2016, 32(6): 1315-1324.
[5] Li J Z, Yuan L, Mongia H C. Simulation Investigation on Combustion Characteristics in a Four-Point Lean Direct Injection Combustor with Hydrogen/Air[J]. Applied Science, 2017, 7(6).
[6] Zhang R C, Fan W J, Shi Q, et al. Combustion and Emission Characteristics of Dual-Channel Double-Vortex Combustion for Gas Turbine Engine[J]. Applied Energy, 2014, 130(5): 314-325.
[7] Mosier S A, Pierce R M. Advanced Combustor Systems for Stationary Gas Turbine Engines, Phase I.Review and Preliminary Evaluation[R]. West Palm Beach: Pratt and Whitney Aircraft Group, PB-80-175599.
[8] McKinney R G, Sepulveda D, Sowa W, et al. The Pratt & Whitney TALON X Low Emissions Combustor: Revolutionary Results with Evolutionary Technology[R]. AIAA 2007-386.
[9] 李杰. 富油燃烧-猝熄-贫油燃烧(RQL)燃烧室技术分析[C]. 北京:第三届民用飞机先进制造技术及装备论坛, 2011.
[10] Van T V, Hwang J J, Ahn K Y. Feasibility Study of Ultra-Low NOx Gas Turbine Combustor Using the RML Combustion Concept[J]. Journal of Mechanical Science and Technology, 2016, 30(12): 5749-5757.
[11] Anacleto P, Heitor M V, Moreira A L N. The Mean and Turbulent Flow Fields in a Model RQL Gas-Turbine Combustor[J]. Experiments in Fluids, 1996, 22(2): 153-164.
[12] Holdeman J D, Liscinsky D S, Samuelsen G S, et al. Mixing of Multiple Jets with a Confined Subsonic Crossflow in a Cylindrical Duct[C]. United Kingdom: The 41st Gas Turbine and Aeroengine Congress Sponsored by the American Society of Mechanical Engineers Birmingham, 1996.
[13] Leong M Y, Samuelsen G S, Holdeman J D. Mixing of Jet Air with a Fuel-Rich Reacting Crossflow[J]. Journal of Propulsion and Power, 1999, 15(5): 617-622.
[14] Demayo T N, Leong M Y, Samuelsen G S, et al. Assessing Jet-Indced Spatial Mixing in a Rich, Reacting Crossflow[J]. Journal of Propulsion and Power, 2003, 19(1): 14-21.
[15] Kartaev E V, Emelkin V A, Ktalkherman M G, et al. Formation of Counter Flow Jet Resulting from Impingement of Multiple Jets Radially Injected in a Crossflow[J]. Experimental Thermal and Fluid Science, 2015,68: 310-321.
[16] Holdeman J D, Liscinsky D S, Oechsle V L, et al. Mixing of Multiple Jet with a Confined Subsonic Crossflow: Part I-Cylindrical Duct [J]. Journal of Engineering for Gas Turbines and Power, 1997, 119(4): 852-862.
[17] Holdeman J D, Liscinsky D S, Bain D B. Mixing of Multiple Jet with a Confined Subsonic Crossflow: Part II-Opposed Rows of Orifices in a Rectangular Duct[J]. Journal of Engineering for Gas Turbines and Power, 1999, 121(3): 551-562.
[18] Kartaev E V, Emelkin V A, Ktalkherman M G, et al. Analysis of Mixing of Impinging Radial Jets with Crossflow in the Regime of Counter Flow Jet Formation[J]. Chemical Engineering Science, 2014, 199(6): 1-9.
[19] Pourhoseini S H, Asadi R. An Experimental Study on Thermal and Radiative Characteristics of Natural Gas Flame in Different Equivalence Ratios by Chemiluminescence and IR Photography Methods[J]. Journal of Natural Gas Science and Engineering, 2017, 40: 126-131.
[20] Sick V. High Speed Imagine in Fundamental and Applied Combustion Research[J]. Proceedings of the Combustion Institute, 2013, 34(2): 3509-3530.
[21] Bohm B, Heeger C, Gordon R L, et al. New Perspectives on Turbulent Combustion: Multi-Parameter High-Speed Planar Laser Diagnostics[J]. Flow Turbulence Combust, 2011, 86(3-4): 313-341.
[22] Boxx I, Slabaugh C, Kutne P, et al. 3kHz PIV/OH-PLIF Measurements in a Gas Turbine Combustor at Elevated Pressure [J]. Proceedings of the Combustion Institute, 2015, 35(3): 3793-3802.
[23] 吕良, 谭建国, 张冬冬. 基于自发辐射断层成像技术的二维预混火焰重建[J]. 燃烧科学与技术, 2015, 21(1): 77-83.
[24] 李峰, 俞南嘉, 戴健. 气氢气氧同轴剪切喷注器燃烧流场的PLIF测量及仿真研究[J]. 推进技术, 2016, 37(7): 1380-1386. (LI Feng, YU Nan-jia, DAI Jian. Simulation and PLIF Experiment Study of Combustion Flowfield for GH2-GO2 Shear Coaxial Injector[J]. Journal of Propulsion Technology, 2016, 37(7): 1380-1386.)
[25] 曾科, 谭建国, 袁金国. 负压下CH4/空气层流预混火焰的自发辐射[J]. 燃烧科学与技术, 2014, 20(1): 84-90.
[26] 范周琴, 刘卫东, 林志勇, 等. 凹腔喷射超声速燃烧火焰结构实验研究[J]. 推进技术, 2013, 34(1): 63-68. (FAN Zhou-qin, LIU Wei-dong, LIN zhi-yong, et al. Experimental Investigation on Supersonic Combustion Flame Structure with Cavity Injectors[J]. Journal of Propulsion Technology, 2013, 34(1): 63-68.)
[27] 范周琴, 刘卫东, 林志勇, 等. 支板喷射超声速燃烧火焰结构实验[J]. 推进技术, 2012, 33(6): 923-927.(FAN Zhou-qin, LIU Wei-dong, LIN Zhi-yong, et al. Experimental Investigation of Supersonic Combustion Flame Structure with Strut Injectors[J]. Journal of Propulsion Technology, 2012, 33(6): 923-927.)
[28] Chong C T, Hochgreb S. Spray Flame Structure of Rapeseed Biodiesel and Jet-A1 Fuel[J]. Fuel, 2014, 115(1): 551-558.
[29] Chong C T, Hochgreb S. Spray Flame Study Using a Model Gas Turbine Swirl Burner [J]. Applied Mechanics and Materials, 2013, 316-317: 17-22.
[30] Kim K T, Santavicca D A. Interference Mechanisms of Acoustic/Convective Disturbances in a Swirl-Stabilized Lean-Premixed Combustor[J]. Combustion and Flame, 2013, 160(8): 1441-1457.
[31] Orain M, Hardalupas Y, Mecanique C R. Effect of Fuel Type on Equivalence Ratio Measurements Using Chemiluminescence in Premixed Flames[J]. Comptes Rendus Mecanique, 2010, 338(5): 241-254.
[32] Hardalupas M, Orain M. Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission from a Flame [J]. Combustion and Flame, 2004, 139(3): 188-207.
[33] Armingol T G, Hardalupas Y, Ballester J. Effect of Local Flame Properties on Chemiluminescence-Based Stoichiometry Measurement [J]. Experimental Thermal and Fluid Science, 2014, 53(2): 93-103.
[34] 耿辉. 超声速燃烧室中凹腔上游横向喷注燃料的流动、混合与燃烧特性研究[D]. 长沙:国防科学技术大学, 2007.
[35] Gaydon A G, Wolfhard H G. Flames, Their Structure, Radiation and Temperature[M]. London: Chapman and Hall, 1979.
[36] 高飞. MATLAB图像处理375例[M]. 北京:人民邮电出版社, 2015.
[37] Smith G P, Luque J, Park C, et al. Low Pressure Flame Determinations of Rate Constants for OH(A) and CH(A) Chemiluminescence [J]. Combustion and Flame, 2002, 131(1): 59-69.
[38] Sadanandan R, Stohr M, Merer W. Simultaneous OH-PLIF and PIV Measurements in a Gas Turbine Model Combustor[J]. Applied Physics B, 2008, 90(3-4): 609-618.
[39] Meier W, Duan X R, Weigand P. Investigation of Swirl Flames in a Gas Turbine Model Combustor II, Turbulence-Chemistry Interactions[J]. Combustion and Flame, 2006, 144(1-2): 225-236. 收稿日期:2017-11-14;修订日期:2017-12-22。基金项目:国家自然科学基金(51476077)。作者简介:陈坚, 男,博士生,研究领域为喷雾燃烧。 E-mail: chenjian2404103@163.com通讯作者:李建中,男, 博士,副教授,研究领域为低排放及新概念燃烧技术。E-mail: ljzh0629@nuaa.edu.cn(编辑:梅瑛)
|