[1] Gligorijevi? N, ?ivkovi? S, Suboti? S, et al. Effect of Cumulative Damage on Rocket Motor Service Life[J]. Journal of Energetic Materials, 2015, 33(4): 229-259.
[2] Hodge K, Crofoot T, Nelson S. Gelled Propellants for Tactical Missile Applications[R]. AIAA 99-2976.
[3] Nevière R, Tixier L. Fracture of Case Bonded Grains in Cold Pressurization Motors Tests[R]. AIAA 2009-5171.
[4] 刘中兵, 周艳青, 张兵. 固体发动机低温点火条件下药柱结构完整性分析[J]. 固体火箭技术, 2015, 38(3): 351-355.
[5] Zimmerman G A, Kispersky J P, Nahlovsky B D, et al. Embrittlement of Propellants Containing Itrate Ester Plasticizers[R]. AIAA 82-1099.
[6] Jeremic R. Some Aspects of Time-Temperature Superposition Principle Applied for Predicting Mechanical Properties of Solid Rocket Propellants[J]. Propellants, Explosive, Pyrotechnics, 1999, 24(4): 221-223.
[7] Chyuan S. Nonlinear Thermoviscoelastic Analysis of Solid Propellant Grains Subjected to Temperature Loading[J]. Finite Element in Analysis and Design, 2002, 38(7): 613-630.
[8] Chyuan S. Dynamic Analysis of Solid Propellant Grains Subjected to Ignition Pressurization Loading[J]. Journal of Sound and Vibration, 2003, 268(3): 465-483.
[9] D’Andrea B, Lillo F, Marcelli G. High Speed Mechanical Characterization and Temperature Constraints of Propellants with Energetic Binders[R]. AIAA 2000-3183.
[10] 阳建红, 周敬恩, 刘朝丰. 基于环境压强下NEPE固体推进剂双剪强度准则[J]. 固体火箭技术, 2007, 30(3): 253-255.
[11] 孟红磊, 赵秀超, 鞠玉涛, 等. 基于累积损伤的双基推进剂强度准则及实验[J]. 推进技术, 2011, 32(1): 109-112. (MENG Hong-lei, ZHAO Xiu-chao, JU Yu-tao, et al. Strength Criterion Based on Accumulative Damage for Double-Base Propellant and Experiment[J].Journal of Propulsion Technology, 2011, 32(1): 109-112.)
[12] Zhejun Wang, Hongfu Qiang, Guang Wang, et al. Tensile Mechanical Properties and Constitutive Model for HTPB Propellant at Low Temperature and High Strain Rate[J]. Journal of Applied Polymer Science, 2015, 132(24).
[13] 王哲君, 强洪夫, 王广, 等. 低温高应变率条件下 HTPB推进剂拉伸力学性能研究[J]. 推进技术, 2015, 36(9): 1426-1432. (WANG Zhe-jun, QIANG Hong-fu, WANG Guang, et al. Tensile Mechanical Properties of HTPB Propellant at Low Temperature and High Strain Rate[J]. Journal of Propulsion Technology, 2015, 36(9): 1426-1432.)
[14] 强洪夫, 王哲君, 王广, 等. HTPB推进剂低温动态准双轴拉伸力学性能研究[C]. 西安:中国航天空天动力联合会议, 2016.
[15] 王哲君. 低温动态加载下HTPB推进剂力学行为的实验和理论研究[D]. 西安:火箭军工程大学, 2016.
[16] GJB 770B-2005. 火药试验方法[S]. 2005.
[17] 王至存. 定速拉伸的固体推进剂双轴板条的应力分析[J]. 固体火箭技术, 1995, 18(1): 54-59.
[18] Williams M L, Landel R F, Ferry J D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids[J]. Journal of the American Chemical Society, 1955, 77(14): 3701-3705.
[19] 俞茂宏. 强度理论新体系[M]. 西安:西安交通大学出版社, 1992. 收稿日期:2017-09-27;修订日期:2017-11-07。基金项目:国家自然科学基金(11772352)。通讯作者:刘畅,男,硕士生,研究领域为飞行器结构完整性分析。E-mail: 565834169@qq.com(编辑:史亚红)
|