[1] Naslain R. Design, Preparation and Properties of Non-Oxide CMCs for Application in Engines and Nuclear Reactors: an Overview[J]. Composites Science and Technology, 2004, 64(2): 155-170.
[2] Beyer S, Schmidt S, Cahuzac G, et al. Advanced Ceramic Matrix Composite Materials for Current and Future Propulsion System Applications[C]. Florida: AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2004.
[3] James A Dicarlo, Mark Van Roode. Ceramic Composite Development for Gas Turbine Engine Hot Section Components[C]. Barcelona: American Society of Mechanical Engineers, 2006.
[4] Stephen T. General Electric Primes CMC for Turbine Blades[EB/OL]. http://www.flightglobal.com/news/articles/general -electric -primes -cmc -for -turbine -blades-349834/.
[5] Zhang Li Tong, Cheng Lai Fei, Luan Xin Gang, et al. Environmental Performance Testing System for Thermostructure Materials Applied in Aeroengines[J]. Key Engineering Materials, 2006, 313: 183-190.
[6] 王厚庆, 何国强, 刘佩进, 等. 超燃冲压发动机燃烧室新型热结构的优化设计[J]. 推进技术, 2009, 30(3). (WANG Hou-qing, HE Guo-qiang, LIU Pei-jin,et al. Optimized Design on a New Type Thermal Structure of Scramjet Combustor[J]. Journal of Propulsion Technology, 2009, 30(3).)
[7] 李志永, 郑日恒, 李立翰, 等. 冲压发动机针刺C/SiC喷管的烧蚀行为研究[J]. 推进技术, 2013, 34(7):956-961. (LI Zhi-yong, ZHENG Ri-heng, LI Li-han, et al. A Study on Ablation Behavior of Needled C/SiC Composite Nozzle for Ramjet[J]. Journal of Propulsion Technology, 2013, 34(7): 956-961.)
[8] 李志永, 郑日恒, 李立翰, 等. 冲压发动机C/SiC喷管承压失效研究[J]. 推进技术, 2013, 34(4): 545-550.(LI Zhi-yong, ZHENG Ri-heng, LI Li-han, et al. Investigation on Bearing Failure of Ramjet C/SiC Nozzle[J]. Journal of Propulsion Technology, 2013, 34(4):545-550.)
[9] Evans A G, Zok F W, Mcmeeking R M. Fatigue of Ceramic Matrix Composites[J]. Acta Metallurgica Et Materialia, 1995, 43(3): 859-875.
[10] Shankar Mall, John Mark Engesser. Effects of Frequency on Fatigue Behavior of CVI C/SiC at Elevated Temperature[J]. Composites Science and Technology, 2006, 66(7–8): 863-874.
[11] Gilbert Fantozzi, Pascal Reynaud, Dominique Rouby. Thermomechanical Behavior of Long Fibers Ceramic-Ceramic Composites[J]. Silicates Industriels, 2001, 66(9).
[12] Marshall D B, Evans A G. Failure Mechanisms in Ceramic-Fiber/Ceramic-Matrix Composites[J]. Journal of the American Ceramic Society, 1985, 68(5): 225-231.
[13] Holmes J W, Chongdu Cho. Experimental Observations of Frictional Heating in Fiber-Reinforced Ceramics[J]. Journal of the American Ceramic Society, 2010, 75(4): 929-938
[14] Anthony G Evans. Design and Life Prediction Issues for High-Temperature Engineering Ceramics and Their Composites[J]. 1997, 45(1): 23-40.
[15] Solti J P, Robertson D D, Mall S. Estimation of Interfacial Properties from Hysteretic Energy Loss in Unidirectional Ceramic Matrix Composites[J]. Advanced Composite Materials, 2000, 9(3): 161-173.
[16] Mcnulty J C, Zok F W. Low-Cycle Fatigue of Nicalon?-Fiber-Reinforced Ceramic Composites[J]. Composites Science and Technology, 1999, 59(10): 1597-1607.
[17] Solti J P, Mall S, Robertson D D. Modeling Damage in Unidirectional Ceramic-Matrix Composites[J]. Composites Science and Technology, 1995, 54(1): 55-66.
[18] Ahn B K, Curtin W A. Strain and Hysteresis by Stochastic Matrix Cracking in Ceramic Matrix Composites[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(2): 177-209.
[19] Zhang Sheng, Gao Xiguang, Dong Hongnian, et al. In Situ Modulus and Strength of Carbon Fibers in C/SiC Composites[J]. Ceramics International, 2017, 43(9):6885-6890.
[20] Zhang Sheng, Gao Xiguang, Dong Hongnian, et al. Effects of Gradual Matrix Crack Closure on the Constitutive Behavior of SiC/SiC Composites upon Unloading[J]. Ceramics International, 2016, 43(2): 1839-1842.
[21] Zhang Sheng, Gao Xiguang, Chen Jing, et al. Strength Model of the Matrix Element in SiC/SiC Composites[J]. Materials & Design, 2016, 101: 66-71.
[22] Sutton M A, Wolters W J, Peters W H, et al. Determination of Displacement Using an Improved Digital Correlation Method[J]. Image and Vision Computing, 1983, 1(3): 133-139.
[23] Chu T C, Ranson W F, Sutton M A. Applications of Digital-Image-Correlation Techniques to Experimental Mechanics[J]. Experimental Mechanics, 1985, 25(3): 232-244.
[24] Amini S, Zok F W. Full-Field Strain Mapping of C-SiC Composites for Hypersonic Applications[C]. Lisbona: International Conference on Composite Materials, 2015.
[25] Meyer P, Waas A M. Measurement of in Situ-Full-Field Strain Maps on Ceramic Matrix Composites at Elevated Temperature Using Digital Image Correlation[J]. Experimental Mechanics, 2015, 55(5): 795-802.
[26] Tracy J, Waas A, Daly S. A New Experimental Approach for in Situ Damage Assessment in Fibrous Ceramic Matrix Composites at High Temperature[J]. Journal of the American Ceramic Society, 2015, 98(6): 1898-1906.
[27] Gao X, Song Y, Yu G. Experimental Investigation of the In-Plane Shear Behavior on Needled C/SiC Composites Using Digital Image Correlation[J]. Journal of Ceramic Science and Technology, 2016, 07(4): 387-396.
[28] Yu Guoqiang, Gao Xiguang, Fang Guangwu, et al. Strain Field Evolution of 2D Needled C/SiC Composites under Tension[J]. Journal of the European Ceramic Society, 2017, 37(2): 531-537.(编辑:朱立影) 收稿日期:2017-10-24;修订日期:2017-12-07。基金项目:国家重点研发计划(2017YFB0703200);国家自然科学基金(51575261;51675266);江苏高校优势学科建设工程 资助项目。作者简介:杨丛橙,女,硕士生,研究领域为陶瓷基复合材料。E-mail: cheng910216@126.com通讯作者:高希光,男,博士,教授,研究领域为陶瓷基复合材料。E-mail: gaoxiguang@nuaa.edu.cn
|