[1] 庞爱民, 黎小平. 固体推进剂技术的创新与发展规律[J]. 含能材料, 2015, 23(1): 3-6.
[2] 庞维强, 樊学忠. 金属燃料在固体推进剂中的应用进展[J]. 化学推进剂与高分子材料, 2009, 25(2): 1-5.
[3] 田德余. 固体推进剂配方优化设计[M]. 北京:国防工业出版社, 2013.
[4] Wood T D. Feasibility Study and Demonstration of an Aluminum and Ice Solid Propellant[D]. Ann Arbor: Purdue University, 2010.
[5] 黄利亚. 镁基水冲压发动机内部燃烧过程与燃烧组织方法研究[D]. 长沙:国防科学技术大学, 2010.
[6] Risha G A, Connell Jr T L. Novel Energetic Materials for Space Propulsion[R]. NASA: DTIC Document: A546818, 2011.
[7] Geisler R L, Kinkead S A. The Relationship Between Solid Propellant Formulation Variables and Motor Performance[R]. AIAA 75-1199.
[8] Risha G A, Connell T L. Combustion of Frozen Nanoaluminum and Water Mixtures[J]. Journal of Propulsion and Power, 2014, 30(1): 133-142.
[9] Wood T D, Pfeil M A, et al. Aluminum-Ice (ALICE) Propellants for Hydrogen Generation and Propulsion[R]. AIAA 2009-4877.
[10] Coats D E, Nickerson G R. A Computer Program for the Prediction of Solid Propellant Rocket Motor Performance[R]. CA: Edwards Air Force Base, ADA-015140, 1981.
[11] 李宜敏, 赵元修. 固体火箭发动机原理[M]. 北京:国防工业出版社, 1985.
[12] 王元有. 固体火箭发动机设计[M]. 北京: 国防工业出版社, 1984.
[13] 张胜敏, 胡春波, 徐义华, 等. 固体火箭发动机燃烧室凝相颗粒燃烧特性分析[J]. 固体火箭技术, 2010, 33(3): 256-259.
[14] Risha G A, Sabourin J L. Combustion and Conversion Efficiency of Nanoaluminum-Water Mixtures[J]. Combustion Science and Technology, 2008, 180(12): 2127-2142.
[15] 方丁酉. 两相流动力学[M]. 长沙:国防科技大学出版社, 1988.
[16] 左罗克, 霍夫曼. 气体动力学下册[M]. 北京:国防工业出版社, 1984.
[17] 刘平安, 王良, 王璐, 等. 高凝相浓度喷管两相流研究进展[J]. 固体火箭技术, 2017, 40(6).
[18] Soo S L. Gas Dynamic Processes Involving Suspended Solids[J]. AIChE Journal, 1961, 7(3): 384-391.
[19] 王良. 高金属含量固体火箭发动机燃烧室压强预示方法[D]. 哈尔滨:哈尔滨工程大学, 2017.
[20] 常显奇. 颗粒尺寸对颗粒速度滞后数的影响[J]. 推进技术, 1985, 6(2): 1-6. (CHANG Xian-qi. Influence of the Particle Size to the Constant Lag Number[J].Journal of Propulsion Technology, 1985, 6(2): 1-6.)
[21] Rudinger G. Fundamentals of Gas Particle Flow[M]. Amsterdam: Elsevier, 2012.
[22] Rudinger G. Gas-Particle Flow in Convergent Nozzles at High Loading Ratios[J]. AIAA Journal, 1970, 8(7): 1288-1294.
[23] 王天祥, 何利民, 任吉娟. 气液两相喷嘴等温流动模型[J]. 机械工程学报, 2008, 15(1): 121-125.
[24] 迟鸿伟. 大负载比气固两相流喷管参数研究及通道形状优化[D]. 哈尔滨:哈尔滨工程大学, 2011.
[25] Gordon S, Mcbride B J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications[R]. NASA Lewis Research Center, NASA-RP-1311, 1994.
[26] 周力行. 湍流两相流动与燃烧的数值模拟[M]. 北京:清华大学出版社, 1991.
[27] Chang I S. One-and Two-Phase Nozzle Flows[J]. AIAA Journal, 1980, 18(12): 1455-1461.
[28] Hwang C J, Chang G C. Numerical Study of Gas-Particle Flow in a Solid Rocket Nozzle[J]. AIAA Journal, 1988, 26(6): 682-689.
[29] Daines W, Boyd D. Effect of Aluminum Concentration in Propellant on Performance of Rocket Motors[R]. AIAA 76-745.
[30] 张胜敏, 胡春波, 夏盛勇, 等. 固体火箭发动机喷管喉部凝相颗粒粒度分布实验[J]. 推进技术, 2012, 33(2): 245-248. (ZHANG Sheng-min, HU Chun-bo, XIA Sheng-yong, et al. Experimental Investigation on the Condensed Particles Size Distribution at SRM Nozzle Throat[J]. Journal of Propulsion Technology, 2012, 33(2): 245-248.)
[31] Kovalev O B. Prediction of the Size of Aluminum-Oxide Particles in Exhaust Plumes of Solid Rocket Motors[J]. Combustion, Explosion and Shock Waves, 2002, 38(5): 535-546.
[32] 刘平安, 王良, 王璐, 等. 铝冰发动机内流场的数值计算[J]. 固体火箭技术, 2017, 40(4): 425-431.(编辑:梅瑛) * 收稿日期:2016-12-05;修订日期:2017-01-18。基金项目:中央高校基本科研基金(HEUCFD1404;HEUCFD1502)。作者简介:刘平安,男,博士,副教授,研究领域为金属燃料发动机。E-mail: liupingan@hrbeu.edu.cn通讯作者:王良,男,硕士生,研究领域为金属燃料发动机。E-mail: wanglianghev@163.com
|