[1] Park S W, Schapery R A. A Viscoelastic Constitutive Model for Particulate Composites with Growing Damage[J]. International Journal of Solids and Structures, 1997, 34(8): 931-947.
[2] Hinterhoelzl R M, Schapery R A. FEM Implementation of a Three-Dimensional Viscoelastic Constitutive Model for Particulate Composites with Damage Growth[J]. Mechanics of Time-Dependent Materials, 2004, 8(1): 65-94.
[3] Ha K, Schapery R A. A Three-Dimensional Viscoelastic Constitutive Model for Particulate Composites with Growing Damage and Its Experimental Validation[J]. International Journal of Solids and Structures, 1998, 35(26): 3497-3517.
[4] Ozupek S, Becker E B. Constitutive Equations for Solid Propellants[J]. Journal of Engineering Materials and Technology, 1997, 119(2): 125-132.
[5] Jung G D, Youn S K. A Nonlinear Viscoelastic Constitutive Model of Solid Propellant[J]. International Journal of Solids and Structures, 1999, 36(25): 3755-3777.
[6] Simo J C. On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects[J]. Computer Methods in Applied Mechanics and Engineering, 1987, 60(2): 153-173.
[7] Abdel-Tawab K, Weitsman Y J. A Strain-Based Formulation for the Coupled Viscoelastic/Damage Behavior[J]. Journal of Applied Mechanics, 2001, 68(2): 304-311.
[8] Abdel-Tawab K, Weitsman Y J. A Coupled Viscoelasticity/Damage Model with Application to Swirl-Mat Composites[J]. International Journal of Damage Mechanics, 1998, 7(4): 351-380.
[9] 彭威. 复合固体推进剂粘弹损伤本构模型的细观力学研究 [D]. 湖南:国防科学技术大学, 2001.
[10] 阳建红, 俞茂宏, 侯根良, 等. HTPB复合固体推进剂含损伤和老化本构研究 [J]. 推进技术, 2002, 23(6): 509-512. (YANG Jian-hong, YU Mao-hong, HOU Gen-liang, et al. Research on the Constitutive Equations of HTPB Composite Solid Propellant with Damage and Aging[J]. Journal of Propulsion Technology, 2002, 23(6): 509-512.)
[11] 姚东, 张光喜, 高波. 考虑应力状态的HTPB/AP推进剂含损伤热-粘弹性本构方程 [J]. 固体火箭技术, 2014, 37(4): 496-499.
[12] 王哲君, 强洪夫, 王广, 等. 中应变率下HTPB推进剂压缩力学性能和本构模型研究 [J]. 推进技术, 2016, 37(4): 776-782. (WANG Zhe-jun, QIANG Hong-fu, WANG Guang, et al. Mechanical Properties and Constitutive Model for HTPB Propellant under Intermediate Strain Rate Compression [J]. Journal of Propulsion Technology, 2016, 37(4): 776-782.)
[13] 杨龙, 谢侃, 裴江峰, 等. HTPB推进剂拉伸力学行为的应变速率相关超弹本构模型[J]. 推进技术, 2017, 38(3): 687-694. (YANG Long, XIE Kan, PEI Jiang-feng, et al. A Strain-Rate-Dependent Hyperelastic Constitutive Model for Tensile Mechanical Behavior of HTPB Propellant [J]. Journal of Propulsion Technology, 2017, 38(3): 687-694.)
[14] Chen J K, Huang Z P, Mai Y W. Constitutive Relation of Particulate-Reinforced Viscoelastic Composite Materials with Debonded Microvoids[J]. Acta Materialia, 2003, 51(12): 3375-3384.
[15] Chen J K, Huang Z P, Mai Y W. A Constitutive Theory of Particulate-Reinforced Viscoelastic Materials with Partially Debonded Microvoids[J]. Computational Materials Science, 2008, 41(3): 334-343.
[16] Tan H, Huang Y, Liu C. The Viscoelastic Composite with Interface Debonding [J]. Composites Science and Technology, 2008, 68(15-16): 3145-3149.
[17] Tohgo K, Itoh Y, Shimamura Y. A Constitutive Model of Particulate-Reinforced Composites Taking Account of Particle Size Effects and Damage Evolution[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(2): 313-321.
[18] Jung G D, Youn S K, Kim B K. A Three-dimensional Nonlinear Viscoelastic Constitutive Model of Solid Propellant[J]. International Journal of Solids and Structures, 2000, 37(34): 4715-4732.
[19] Schapery R A A. On Viscoelastic Deformation and Failure Behavior of Composite Materials with Distributed Flaws[J]. Advances in Aerospace Structures and Materials, 1981, (1): 5-20.
[20] Sanahuja J. Effective Behaviour of Ageing Linear Viscoelastic Composites: Homogenization Approach[J]. International Journal of Solids and Structures, 2013, 50(19): 2846-2856.
[21] Lavergne F, Sab K, Sanahuja J, et al. Homogenization Schemes for Aging Linear Viscoelastic Matrix-Inclusion Composite Materials with Elongated Inclusions[J]. International Journal of Solids and Structures, 2016, 80:545-560.
[22] El Kouri M, Bakkali A, Azrar L. Mathematical Modeling of the Overall Time-Dependent Behavior of Non-Ageing Viscoelastic Reinforced Composites[J]. Applied Mathematical Modelling, 2016, 40(7): 4302-4322.
[23] 赵爱红, 虞吉林. 含正交排列夹杂和缺陷材料的等效弹性模量和损伤[J]. 力学学报, 1999, 31(4): 475-483.
[24] Schapery R A. Simplifications in the Behavior of Viscoelastic Composites with Growing Damage[M]. New York: Springer, 1990: 193-214.
[25] Park S W. Development of a Nonlinear Thermo-Viscoelastic Constitutive Equation for Particulate Composites with Growing Damage[D]. Austin: University of Texas at Austin, 1994.
[26] Huang N C, Korobeinik M Y. Interfacial Debonding of a Spherical Inclusion Embedded in an Infinite Medium under Remote Stress[J]. International Journal of Fracture, 2001, 107(1): 11-30.
[27] García I G, Manti[c] V, Graciani E. A Model for the Prediction of Debond Onset in Spherical-Particle-Reinforced Composites under Tension. Application of a Coupled Stress and Energy Criterion[J]. Composites Science and Technology, 2015, 106: 60-67.
[28] Park S W, Schapery R A. Methods of Interconversion Between Linear Viscoelastic Material Functions, Part I:a Numerical Method Based on Prony Series [J]. International Journal of Solids and Structures, 1998, 36(11): 1653-1675.
[29] Schapery R A. A Theory of Crack Initiation and Growth in Viscoelastic Media, Part II: Approximate Methods of Analysis[J]. International Journal of Fracture, 1975, 11(1): 141-59.(编辑:梅瑛) * 收稿日期:2016-11-26;修订日期:2017-02-23。作者简介:顾志旭,男,博士生,研究领域为复合固体推进剂老化损伤本构建模。E-mail: guzhixu@126.com
|