[1] Zhang H, Han C, Ye T, et al. Large Eddy Simulation of Turbulent Premixed Combustion using Tabulated Detailed Chemistry and Presumed Probability Density Function[J]. Journal of Turbulence, 2016, 17: 327-355.
[2] Shi X, Chen J Y, Chen Z. Numerical Study of Laminar Flame Speed of Fuel-Stratified Hydrogen/Air Flames[J]. Combustion & Flame, 2015, 163: 394-405.
[3] Colin O, Ducros F, Veynante D, et al. A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion[J]. Physics of Fluids, 2000, 12(7): 1843-1863.
[4] Boger M, Veynante D, Boughanem H, et al. Direct Numerical Simulation Analysis of Flame Surface Density Concept for Large Eddy Simulation of Turbulent Premixed Combustion[J]. Symposium on Combustion, 1998, 27(1): 917-925.
[5] Pitsch H, Lageneste L D D. Large-Eddy Simulation of Premixed Turbulent Combustion Using a Level-Set Approach[J]. Proceedings of the Combustion Institute, 2002, 29(2): 2001-2008.
[6] Fiorina B, Vicquelin R, Auzillon P, et al. A Filtered Tabulated Chemistry Model for LES of Premixed Combustion[J]. Combustion and Flame, 2010, 157(3): 465-475.
[7] Jones W P, Prasad V N. LES-Pdf Simulation of a Spark Ignited Turbulent Methane Jet[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1355-1363.
[8] Klimenko A Y, Bilger R W. Conditional Moment Closure for Turbulent Combustion[J]. Progress in Energy and Combustion Science, 1999, 25(6): 595-687.
[9] Ma T, Stein O T, Chakraborty N, et al. A Posteriori Testing of Algebraic Flame Surface Density Models for LES[J]. Combustion Theory and Modelling, 2013, 17(3): 431-482.
[10] Ma T, Stein O T, Chakraborty N, et al. A Posteriori Testing of the Flame Surface Density Transport Equation?for?LES[J]. Combustion Theory and Modelling, 2014, 18(1): 32-64.
[11] Marincola F C, Ma T, Kempf A M. Large Eddy Simulations of the Darmstadt Turbulent Stratified Flame Series[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1307-1315.
[12] Butz D, Gao Y, Kempf A M, et al. Large Eddy Simulations of a Turbulent Premixed Swirl Flame Using an Algebraic Scalar Dissipation Rate Closure[J]. Combustion and Flame, 2015, 72(9): 3180-3196.
[13] 韩超, 张培, 叶桃红, 等. 不同湍流预混燃烧模型在本生灯火焰中的比较[J]. 推进技术, 2014, 35(8): 1086-1093. (HAN Chao, ZHANG Pei, YE Tao-hong, et al. A Comparison of Three Different Turbulent Premixed Combustion Models in Busen Flames[J]. Journal of Propulsion Technology, 2014, 35(8): 1086-1093.)
[14] Lecocq G, Richard S, Colin O, et al. Hybrid Presumed PDF and Flame Surface Density Approaches for Large-Eddy Simulation of Premixed Turbulent Combustion, Part 1: Formalism and Simulation of a Quasi-Steady Burner[J]. Combustion and Flame, 2011, 158(6): 1201-1214.
[15] Sweeney M S, Hochgreb S, Dunn M J, et al. The Structure of Turbulent Stratified and Premixed Methane/Air Flames I: Non-Swirling Flows[J]. Combustion and Flame, 2012, 159(9): 2896-2911.
[16] Zhang H, Han C, Ye T, et al. Large Eddy Simulation of Unconfined Turbulent Swirling Flow[J]. Science China Technological Sciences, 2015, 58(10): 1731-1744.
[17] 张宏达, 张济民, 韩超, 等. 大涡模拟研究钝体有旋流流场的拟序结构[J]. 航空学报, 2014, 35(7):1854-1864.
[18] Proch F, Kempf A M. Numerical Analysis of the Cambridge Stratified Flame Series Using Artificial Thickened Flame LES with Tabulated Premixed Flame Chemistry[J]. Combustion and Flame, 2014, 161(10): 2627-2646.
[19] Nambully S, Domingo P, Moureau V, et al. A Filtered-Laminar-Flame PDF Sub-Grid Scale Closure for LES of Premixed Turbulent Flames, Part I: Formalism and Application to a Bluff-Body Burner with Differential Diffusion[J]. Combustion and Flame, 2014, 161(7): 1756-1774.
[20] Mercier R, Schmitt T, Veynante D, et al. The Influence of Combustion SGS Submodels on the Resolved Flame Propagation.Application to the LES of the Cambridge Stratified Flames[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1259-1267.
[21] Brauner T, Jones W P, Marquis A J. LES of the Cambridge Stratified Swirl Burner Using a Sub-Grid PDF Approach[J]. Flow, Turbulence and Combustion, 2016, 96(4): 1-21.
[22] 张宏达, 叶桃红, 陈靖, 等. 湍流贫燃预混射流火焰的大涡模拟[J]. 推进技术, 2015, 36(7): 1027-1035. (ZHANG Hong-da, YE Tao-hong, CHEN Jing, et al. Large Eddy Simulation of Turbulent Lean Premixed Jet Flame[J]. Journal of Propulsion Technology, 2015, 36(7): 1027-1035.)
[23] Bilger R W, St?rner S H, Kee R J. On Reduced Mechanisms for Methane Air Combustion in Nonpremixed Flames[J]. Combustion and Flame, 1990, 80(2): 135-149.
[24] Bray K, Domingo P, Vervisch L. Role of the Progress Variable in Models for Partially Premixed Turbulent Combustion[J]. Combustion and Flame, 2005, 141(4): 431-437.
[25] Pierce C D, Moin P. A Dynamic Model for Subgrid-Scale Variance and Dissipation Rate of a Conserved Scalar[J]. Physics of Fluids, 1998, 10(12): 3041-3044.
[26] Ma T, Gao Y, Kempf A M, et al. Validation and Implementation of Algebraic LES Modelling of Scalar Dissipation Rate for Reaction Rate Closure in Turbulent Premixed Combustion[J]. Combustion and Flame, 2014, 161(12): 3134-3153.
[27] Muppala S P R, Aluri N K, Dinkelacker F, et al. Development of an Algebraic Reaction Rate Closure for the Numerical Calculation of Turbulent Premixed Methane, Ethylene, and Propane/Air Flames for Pressures up to 1.0MPa[J]. Combustion and Flame, 2005, 140(4): 257-266.
[28] Pitsch H. FlameMaster v3.3.9:?A C++ Computer Program for 0D Combustion and 1D Laminar Flame Calculations[DB/OL]. http://www.stanford.edu/group/pitsch, 1998.
[29] Kamal M M, Barlow R S, Hochgreb S. Conditional Analysis of Turbulent Premixed and Stratified Flames on Local Equivalence Ratio and Progress of Reaction[J]. Combustion and Flame, 2015, 162(12): 1-18.
[30] 韩超, 张培, 叶桃红, 等. 甲烷/空气射流抬举火焰的大涡模拟计算[J]. 推进技术, 2014, 35(5): 654-660. (HAN Chao, ZHANG Pei, YE Tao-hong, et al. Large Eddy Simulation of CH4/Air Lifted Flame[J]. Journal of Propulsion Technology, 2014, 35(5): 654-660.)
[31] Floyd J, Kempf A M, Kronenburg A, et al. A Simple Model for the Filtered Density Function for Passive Scalar Combustion LES[J]. Combustion Theory and Modelling, 2009, 13(4): 559-588.
[32] Domingo P, Vervisch L, Payet S, et al. DNS of a Premixed Turbulent V Flame and LES of a Ducted Flame Using a FSD-PDF Subgrid Scale Closure with FPI-Tabulated Chemistry[J]. Combustion and Flame, 2005, 143(4): 566-586.
[33] Ihme M, Pitsch H. Prediction of Extinction and Reignition in Nonpremixed Turbulent Flames Using a Flamelet/Progress Variable Model: 2. Application in LES of Sandia Flames D and E[J]. Combustion and Flame, 2008, 155(1): 90-107.
[34] Smith G, Golden D, Frenklach M, et al. GRI-Mech 3.0, 2000[EB/OL] . http://www.me.berkeley.edu/gri_ mech, 2000.
[35] Zhou R, Balusamy S, Sweeney M S, et al. Flow Field Measurements of a Series of Turbulent Premixed and Stratified Methane/Air Flames[J]. Combustion and Flame, 2013, 160(10): 2017-2028.
[36] Jeong J, Hussain F. On the Identification of a Vortex[J]. Journal of Fluid Mechanics, 1995, 285(4): 69-94.
[37] Masri A R. Partial Premixing and Stratification in Turbulent Flames[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1115-1136.
[38] Van Oijen J A, De Goey L P H. Modelling of Premixed Counterflow Flames Using the Flamelet-Generated Manifold Method[J]. Combustion Theory and Modelling, 2002, 6(3): 463-478. * 收稿日期:2016-09-26;修订日期:2016-11-30。基金项目:国家自然科学基金(91441117)。作者简介:于洲,男,硕士生,研究领域为湍流预混、分层燃烧的数值模拟。 E-mail: yuztc@mail.ustc.edu.cn通讯作者:叶桃红,男,博士,副教授,研究领域为湍流燃烧理论和数值研究。E-mail: thye@ustc.edu.cn(编辑:张荣莉)
|