[1] T S. On Stationary and Travelling Vortex Breakdowns [J]. Journal of Fluid Mechanics,1971, 45(3): 545-559.
[2] Huang Y, Yang V. Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion [J]. Progress in Energy & Combustion Science, 2009, 35(4): 293-364.
[3] 朱文中, 杨渐志, 陈靖, 等. 湍流扩散火焰局部熄火现象的大涡模拟研究[J]. 推进技术, 2015, 36(6): 808-815. (ZHU Wen-zhong, YANG Jian-zhi, CHEN Jing, et al. Large Eddy Simulation of Local Extinction of Turbulent Non-Premixed Flame[J]. Journal of Propulsion Technology, 2015, 36(6): 808-815.)
[4] 张昊, 朱民. 热声耦合振荡燃烧的实验研究与分析[J]. 推进技术, 2010, 31(6): 730-744. (ZHANG Hao, ZHU Min. Experimental Study and Analysis of Thermo-Acoustic Instabilities in Natural Gas Premixed Flames[J]. Journal of Propulsion Technology, 2010, 31(6): 730-744.)
[5] Oberleithner K, St?hr M, Im S H, et al. Formation and Flame-Induced Suppression of the Precessing Vortex Core in a Swirl Combustor: Experiments and Linear Stability Analysis[J]. Combustion and Flame, 2015, 162(8): 3100-3114.
[6] Silva C F, Leyko M, Nicoud F, et al. Assessment of Combustion Noise in a Premixed Swirled Combustor Via Large-Eddy Simulation[J]. Computers & Fluids, 2013, 78(12): 1-9.
[7] Mafra M R, Fassani F L, Zanoelo E F, et al. Influence of Swirl Number and Fuel Equivalence Ratio on NO Emission in an Experimental LPG-Fired Chamber[J]. Applied Thermal Engineering, 2010, 30(8): 928-934.
[8] Zhou L X, Wang F, Zhang J. Simulation of Swirling Combustion and NO Formation Using a USM Turbulence-Chemistry Model[J]. Fuel, 2003, 82(13): 1579-1586.
[9] Shi L, Fu Z, Shen Y, et al. LES of Swirl Angle on Combustion Dynamic and NOx Formation in a Hybrid Industrial Combustor[J]. International Journal of Heat & Technology, 2016, 34(2): 197-206.
[10] Fu Y, Cai J, Jeng S M, et al. Confinement Effects on the Swirling Flow of a Counter-Rotating Swirl Cup[R]. ASME GT 2005-68622.
[11] Duwig C, Fuchs L, Lacarelle A, et al. Study of the Vortex Breakdown in a Conical Swirler Using LDV, LES and POD[R]. ASME GT 2007-27006.
[12] Stopper U, Meier W, Sadanandan R, et al. Experimental Study of Industrial Gas Turbine Flames Including Quantification of Pressure Influence on Flow Field, Fuel/Air Premixing and Flame Shape[J]. Combustion and Flame, 2013, 160: 2103-2118.
[13] Bulat G, Jones W P, Marquis A J. NO and CO Formation in an Industrial Gas-Turbine Combustion Chamber Using LES with the Eulerian Sub-Grid PDF Method [J].Combustion and Flame, 2014, 161(7): 1804-1825.
[14] Bulat G, Jones W P, Marquis A J. Large Eddy Simulation of an Industrial Gas-Turbine Combustion Chamber Using the Sub-Grid PDF Method [J]. Proceedings of the Combustion Institute, 2013, 34(2): 3155-3164.
[15] Gicquel L Y M, Staffelbach G, Poinsot T. Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers[J]. Progress in Energy and Combustion Science, 2012, 38(6): 782-817.
[16] Syred N. A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems[J]. Progress in Energy and Combustion Science, 2006, 32(2): 93-161.
[17] Kexin Liu, Victoria Sanderson. The Influence of Changes in Fuel Calorific Value to Combustion Performance for Siemens SGT-300 Dry Low Emission Combustion System[J]. Fuel, 2013, 103: 239-246.
[18] St?hr M, Boxx I, Carter C D, et al. Experimental Study of Vortex-Flame Interaction in a Gas Turbine Model Combustor[J]. Combustion and Flame, 2012, 159(8): 2636-2649. * 收稿日期:2016-09-28;修订日期:2016-11-30。基金项目:中央高校基本科研业务费专项资金资助项目(2014ZZD04;2014XS17);北京市自然基金面上项目(3162030)。作者简介:石黎,男,研究领域为复杂热力系统建模,湍流燃烧理论与数值模拟。 E-mail: hnulee@sina.com(编辑:张荣莉)
|